Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm. Gọi H là chân đường vuông góc kẻ từ A xuống BD, phân giác của BCD cắt BD ở E. 1) Chứng minh: Tam giác AHB đồng dạng tam giác BCD. 2) Chứng minh AH.ED = HB.EB. 3) Tính diện tích tứ giác AECH.
câu 4 : cho hình chữ nhật ABCD có AB=8cm , BC=6cm . Gọi H là chân đường vuông góc kẻ từ A xuống BD, phân giác của góc BCD cắt BD ở E
A, chứng minh : tâm giác AHB đồng dạng tam giác BCD
B, chứng minh ; AH.ED=HB.EB
C, TÍNH DIỆN TÍCH hình tứ giác AECH
Cho hình chữ nhật ABCD có AB=8cm,BC=6cm .Gọi H là chân đường vuông góc kẻ từ A xuống BD ,phân giác của góc BCD cắt BD ở E
a,C/m tam giác AHB đồng dạng tam giác BCD
b,C/m AH.ED=HB.EB
c,Tính diện tích tứ giác AECH
CẬU à,b GIẢI ĐC RỒI NHƯNG CÂU c KHÓ QUÁ K LÀM ĐC CÁC BẠN GIÚP MÌNH VỚI
MÌNH CHỈ BIẾT KẾT QUẢ LÀ Sabcd =10,15cm
Câu 4 (3 điểm) Cho hình chữ nhật A B C D có AB = 8cm, BC = 6cm. Gọi H là chân đường vuông góc kẻ từ A xuống BD, phân giác của cắt B D ở E.
1) Chứng minh: Tam giác AHB đồng dạng tam giác BCD.
2) Chứng minh AH.ED = HB.EB.
3) Tính diện tích tứ giác AECH.
Câu4: Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm. Gọi H là chân đường vuông góc kẻ từ A xuống BD, phân giác của góc BCD cắt BD ở E. a, chứng minh Tam giác AHB đồng dạng tam giác BCD. b, Chứng minh AH.ED = HB.EB.
CHO hình chữ nhật ABCD có AB=8cm,BC=6cm .Gọi H là chân đường vuông góc kẻ từ đỉnh A xuống BD ,phân giác của góc BCD cat BD ò E
Tinh dien tich tu giac AECH
KẾT quả là 10,15
Giúp mình giải chi tiết nha
Cho hình chữ nhật abcd có ab=8cm, bc=6cm , gọi H là chân đường vuông góc từ a xuống bd.
Tia phân giác của góc BCD cắt bd ở e
a)CM △AHB ∞ △BCD
B) Tính tỉ số BE/ED
C) Tính tỉ số Sahb/ Sbcd
cho hình chữ nhật ABCD, có AB= 12cm , BC=9cm, gọi H là chân đường vuông góc kẻ từ A xuống BD , tia phân giác của góc CBD cắt CD tại E . a, tính tỷ số EC/ED. b, cminh tam giác AHB đồng dạng với tam giác BCD
Cho hình chữ nhật ABCD có AB=12cm, BC=5cm. Gọi H là chân đường vuông góc kẻ từ A xuống BD, phân giác của góc BCD cắt BD ở E
a) CM: tam giác AHB đồng dạng tam giác BCD
b) Tính độ dài AH ?
c) CM: AH.ED=HB.EB