a, Xét ΔHAB và ΔCBD có :
\(\widehat{H}=\widehat{C}=90^0\)
\(\widehat{ABH}=\widehat{BDC}\left(AB//CD;slt\right)\)
\(\Rightarrow\Delta HAB\sim\Delta CBD\left(g-g\right)\)
b, Xét ΔHDA và ΔADB có :
\(\widehat{H}=\widehat{A}=90^0\)
\(\widehat{D}:chung\)
\(\Rightarrow\Delta HDA\sim\Delta ADB\left(g-g\right)\)
\(\Rightarrow\dfrac{AD}{BD}=\dfrac{HD}{AD}\)
\(\Rightarrow AD^2=HD.BD\)
c, Xét tam giác ABD vuông A theo định lý Pi-ta-go ta được :
\(\Rightarrow BD=\sqrt{AB^2+AD^2}=\sqrt{8^2+6^2}=10\left(cm\right)\)
Ta có \(\dfrac{AD}{BD}=\dfrac{HD}{AD}\left(cmt\right)\)
hay \(\dfrac{8}{10}=\dfrac{HD}{8}\)
\(\Rightarrow DH=\dfrac{8.8}{10}=6,4\left(cm\right)\)