CHo hình chữ nhật ABCD. Biết 2AB=3BC . Trên BC lấy E . Tia EA cắt DC tại F. CM:\(\frac{1}{4AE^2}+\frac{1}{9AF^2}\)không phụ thuộc vào vị trí của E trên BC
Cho hình vuông ABCD biết 2 AB = 3 CD Trên cạnh BC lấy điểm E .tia AE cắt DC tại F
CM: \(\frac{1}{4AE^2}+\frac{1}{9AF^2}\) không phụ thuộc vào vị trí của E trên BC
Cho hình chữ nhật ABCD, AB=2BC. Trên BC lấy E, tia AE cắt CD ở F. cm\(\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{4AF^2}\)
cho hình chữ nhật ABCD có AD= 2AB. Trên cạnh BC lấy E bất kỳ, tia AE cắt DC tại K. Qua A kẻ đường thẳng vuông góc AE cắt CD tại H
a, chứng minh tam giác ABE đồng dạng tam giác ADH
b, chứng minh \(\frac{1}{AE^2}+\frac{4}{AK^2}khôngđổikhiEthayđổi\)
Hình vuông ABCD . Điểm I nằm thay đổi giữa A và B , tia DI cắt BC tại E , đường thẳng qua D vuông góc với DE cắt BC tại F . chứng minh:
1/DE^2 + 1/DI^2 không phụ thuộc vào vị trí của I
Cho hình chữ nhật ABCD, AB=2BC. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại F. Chứng minh rằng:\(\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{4AF^2}\)
Cho hình chữ nhật \(ABCD\) có AB=2BC . Trên cạnh BC lấy E bất kỳ . AE cắt DC tại F .
Chứng minh: \(\frac{1}{AE^2}+\frac{1}{4AF^2}\) không đổi .
cho hình chữ nhật ABCD , AB=2BC . Trên cạnh BC lấy điểm E tia AE cắt đường thẳng CD ở F
cmr \(\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{4AF^2}\)
Cho hình vuông ABCD và điểm E tùy ý trên cạnh BC. Tia Ax vuông góc với AE tại A cắt CD kéo dài tại F. Kẻ trung tuyên AI của tam giác AEF và kéo dài cắt cạnh CD tại K.
a, Chứng minh AE = AF
b, Chứng minh các tam giác AKF, CAF đồng dạng và A F 2 = K F . C F
c, Cho AB = 4 cm, BE = 3 4 BC. Tính diện tích tam giác AEF
d, Khi E di động trên cạnh BC, tia AE cắt CD tại J. Chứng minh biểu thức A E . A J F J có giá trị không phụ thuộc vị trí của E