Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê vsbzhsjskskskssm

cho hình chóp SABCD đáy là hình vuông, SA=SB=SC=SD. Mặt phẳng P đi qua A và vuông góc với SC cắt SB,SC,SD lần lượt tại B',C',D' biết 3SB'=2SB. Tính VA'B'C'D'/VABCD

Nguyễn Việt Lâm
30 tháng 6 2021 lúc 17:42

Do \(SA=SB=SC=SD\) và đáy là hình vuông nên \(SABCD\) là chóp đều

Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\)

Theo tính đối xứng của chóp đều \(\Rightarrow SB'=SD'\Rightarrow B'D'||BD\)

Gọi M là giao điểm SO và AC' \(\Rightarrow M\in B'D'\) (t/c giao tuyến 3 mp cắt nhau)

Áp dụng định lý Talet:

\(\dfrac{SM}{SO}=\dfrac{SD'}{SD}=\dfrac{SB'}{SB}=\dfrac{2}{3}\Rightarrow M\) là trọng tâm tam giác SAC

\(\Rightarrow C'\) là trung điểm SC \(\Rightarrow\dfrac{SC'}{SC}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{V_{SAB'C'D'}}{V_{SABCD}}=\dfrac{2V_{SAB'C'}}{2V_{SABC}}=\dfrac{V_{SAB'C'}}{V_{SABC}}=\dfrac{SA}{SA}.\dfrac{SB'}{SB}.\dfrac{SC'}{SC}=1.\dfrac{2}{3}.\dfrac{1}{2}=\dfrac{1}{3}\)


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Lê vsbzhsjskskskssm
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Lê vsbzhsjskskskssm
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết