Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi M là trung điểm của CD. Biết khoảng cách giữa hai đường thẳng BC và SM bằng a 3 4 . Tính thể tích của khối chóp đã cho theo a.
A. a 3 3 4
B. a 3 3 2
C. a 3 3 6
D. a 3 3 12
Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD) và ABCD là hình vuông cạnh a, góc giữa SC và mặt phẳng (ABCD) bằng 45 ∘ . Mặt phẳng ( α ) qua A và vuông góc với SC và chia khối chóp S.ABCD thành hai khối đa diện. Gọi V 1 là thể tích của khối đa diện có chứa điểm S và V 2 là thể tích của khối đa diện còn lại. Tìm tỉ số V 1 V 2 ?
A. 1
A. 1 3
C. 1 2
D. 4 5
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a (a > 0). Hai mặt phẳng (SBC) và (SCD) cùng tạo với mặt phẳng (ABCD) một góc 45 ∘ . Biết SB = a và hình chiếu của S trên mặt phẳng (ABCD) nằm trong hình vuông ABCD. Tính thể tích khối chóp S.ABCD
Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), đáy là hình thang ABCD vuông tại A và B có AB = a, AD = 3a, BC=a. Biết SA = a 3 , tính thể tích khối chóp S.BCD theo a.
A. 2 3 a 3
B. 3 a 3 6
C. 2 3 a 3 3
D. 3 a 3 4
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2 2 , cạnh bên SA vuông góc với mặt phẳng đáy và SA = 3. Mặt phẳng ( α ) qua A và vuông góc với SC cắt các cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Tính thể tích V của khối cầu ngoại tiếp tự diện CMNP.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2 2 , cạnh bên SA vuông góc với mặt phẳng đáy và SA = 3. Mặt phẳng ( α ) qua A và vuông góc với SC cắt các cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Tính thể tích V của khối cầu ngoại tiếp tự diện CMNP.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt đáy và SA = a. Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC.
A. 3 πa 2 7
B. 7 πa 2 12
C. 7 πa 2 3
D. πa 2 7
Cho hình chóp S.ABCD có đường thẳng SA vuông góc với mặt phẳng (ABCD), đáy ABCD là hình thang vuông tại A và B, có A B = a , A D = 2 a , B C = a . Biết rằng S A = a 2 . Tính thể tích V của khối chóp S.ABCD theo a.
Cho hình chóp S.ABCD có đáy ABCD là một hình thang với đáy AD và BC. Biết AD = a, BC = b. Gọi I và J lần lượt là trọng tâm các tam giác SAD và SBC. Mặt phẳng (ADJ) cắt SB, SC lần lượt tại M, N. Mặt phẳng (BCI) cắt SA, SD tại P, Q. Giả sử AM cắt BP tại E; CQ cắt DN tại F. Tính EF theo a,b
A. E F = 1 2 ( a + b )
B. E F = 3 5 ( a + b )
C. E F = 2 3 ( a + b )
D. E F = 2 5 ( a + b )