Cho hình chóp S.ABC có SA=SB=SC và tam giác ABC vuông tại C. Gọi H là hình chiếu vuông góc của S lên mp (ABC). Khẳng định nào sau đây là khẳng định đúng?
A. H là trung điểm cạnh AB
B. H là trọng tâm tam giác ABC
C. H là trực tâm tam giác ABC
D. H là trung điểm cạnh AC.
Cho hình chóp S.ABCD có S A ⊥ ( A B C ) và ∆ A B C vuông ở B. AH là đường cao của ∆ S A B . Khẳng định nào sau đây sai?
A. S A ⊥ B C
B. A H ⊥ B C
C. A H ⊥ A C
D. A H ⊥ S C
cho hình chóp SABC có SA=a, SA vuông góc với (ABC). Tam giác ABC vuông cân tại B và AB=a, kẻ AH vuông góc với SC tại H. VSABH là
Cho hình chóp S.ABCD có đáy ABC là tam giác vuông cân tại B, BC=2a, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu của A lên SB và SC, khi đó thể tích của khối cầu ngoại tiếp hình chóp AHKCB là
Cho tam giác ABC vuông tại A, BC=a, AC=b, AB=c, b<c. Khi quay tam giác vuông ABC một vòng quanh cạnh BC, quanh cạnh AC, quanh cạnh AB, ta được các hình có diện tích toàn phần theo thứ tự bằng S a , S b , S c . Khẳng định nào dưới đây đúng?
Cho hình chóp S.ABC có S A ⊥ ( A B C ) , tam giác ABC vuông ở B. AH là đường cao của ∆ S A B . Tìm khẳng định sai.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B. Biết SA vuông góc với mặt phẳng (ABC), AB = a, B C = a 3 , SA = a. Một mặt phẳng (α) qua A vuông góc SC tại H và cắt SB tại K. Tính thể tích khối chóp S.AHK theo a
A. V S . A H K = a 3 3 20
B. V S . A H K = a 3 3 30
C. V S . A H K = a 3 3 60
D. V S . A H K = a 3 3 90
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B. Biết SA vuông góc với mặt phẳng (ABC), AB = a, BC = a 3 , SA = a. Một mặt phẳng ( α ) qua A vuông góc SC tại H và cắt SB tại K. Tính thể tích khối chóp S.AHK theo a.
Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân ở B, A C = a 2 . SA vuông góc với mặt phẳng (ABC) và SA=a. Gọi G là trọng tâm của tam giác SBC. Một mặt phẳng đi qua hai điểm A, G và song song với BC cắt SB, SC lần lượt tại B' và C'. Thể tích khối chóp S.A'B'C' bằng: