Đáp án là A
Từ giả thiết , ta có SA ⊥ (ABC): B đúng
Ta có :
=> C đúng.
Ta có:
=> D đúng.
Do đó : A sai . Chọn A.
Nhận xét : Ta có cũng có thể giải như sau:
Mà (SCD) và (SAD) không song song hay
Trùng nhau nên CD ⊥ (SCD) là sai . Chọn A.
Đáp án là A
Từ giả thiết , ta có SA ⊥ (ABC): B đúng
Ta có :
=> C đúng.
Ta có:
=> D đúng.
Do đó : A sai . Chọn A.
Nhận xét : Ta có cũng có thể giải như sau:
Mà (SCD) và (SAD) không song song hay
Trùng nhau nên CD ⊥ (SCD) là sai . Chọn A.
Cho khối chóp S.ABCD có đáy là hình bình hành, AB=3, AD=4, B A C ^ = 120 ° . Cạnh bên S A = 2 3 vuông góc với mặt phẳng đáy (ABCD). Gọi M,N,P lần lượt là trung điểm các cạnh SA, ADvà BC, α là góc giữa hai mặt phẳng (SAC) và (MNP). Chọn khẳng định đúng trong các khẳng định sau đây
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, ABC = 60 ° cạnh bên SA = a 2 và SA vuông góc với ABCD. Tính góc giữa SB và (SAC).
A. 90 °
B. 30 °
C. 45 °
D. 60 °
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Biết BC = a 3 . Cạnh bên SA vuông góc với mặt phẳng (ABCD) và SA = a. Góc giữa SD với mặt phẳng (SAB) là:
A. 30o
B. 45o
C. 60o
D. 90o
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy (ABCD). Biết góc tạo bởi hai mặt phẳng (SBC) và (ABCD) bằng 60 o . Thể tích V của khối chóp S.ABCD.
A. a 3 3
B. a 3 3 3
C. a 3 3 12
D. a 3 3 24
Cho hình chóp SABC có đáy ABC là tam giác cân tại B, cạnh bên SA vuông góc với đáy, M là trung điểm BC, J là hình chiếu của A lên BC. Khẳng định nào sau đây đúng ?
A. BC ⊥ (SAC)
B.BC ⊥ (SAM)
C.BC ⊥ (SAJ)
D. BC ⊥ (SAB)
Cho hình chóp S . A B C D có đáy A B C D là hình vuông cạnh a , cạnh bên S A vuông góc với mặt phẳng đáy, góc giữa mặt phẳng S B C và mặt phẳng đáy bằng 60 0 . Khoảng cách từ D đến mặt phẳng S B C bằng
A. a 6 4
B. a 2
C. a 3 2
D. a 15 3
Cho hình chóp S.ABC có đáy là tam giác vuông cân cạnh bằng B, cạnh bên SA vuông góc với mặt phẳng đáy, AB=BC=a và SA=a. Góc giữa hai mặt phẳng (SAC) và (SBC) bằng
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB=a, cạnh bên SA vuông góc với đáy và SA=a. Góc giữa hai mặt phẳng (SBC) và (SAD) bằng:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB nằm trong mặt phẳng vuông góc với (ABCD), S A B ^ = 30°, SA = 2a. Tính thể tích V của khối chóp S.ABCD.
A. a 3 3 6
B. a 3 3
C. a 3 9
D. a 3