Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, S A ⊥ A B C D , S A = a . Gọi G là trọng tâm tam giác SCD. Tính thể tích khối chóp G.ABCD.
A. 1 6 a 3
B. 1 12 a 3
C. 2 17 a 3
D. 1 9 a 3
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, S A ⊥ ( A B C S ) , S A = a Gọi G là trọng tâm tam giác SCD. Tính thể tích khối chóp G.ABCD
A. 1/6a3
B. 1/12a3
C. 2/17a3
D. 1/9a3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hình chiếu của S lên mặt phẳng đáy trùng với trọng tâm tam giác ABD. Cạnh bên SD tạo với đáy một góc 60 0
Tính thể tích khối chóp S.ABCD
A. a 3 15 3
B. a 3 15 27
C. a 3 15 9
D. a 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA=a 3 và vuông góc với đáy. Gọi G là trọng tâm tam giác BCD. Tính khoảng cách từ G đến mặt phẳng (SBC).
A. a 3
B. a 3 2
C. a 3 3
D. a 3 6
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và D. SA vuông góc với mặt phẳng đáy (ABCD); AB=2a; AC=CD=a. Mặt phẳng (P) đi qua CD và trọng tâm G của tam giác SAB cắt các cạnh SA, SB lần lượt tại M và N. Tính thể tích khối chóp S.CDMN theo thể tích khối chóp S.ABCD
A. V S . C D M N = 14 27 V S . A B C D
B. V S . C D M N = 4 27 V S . A B C D
C. V S . C D M N = 10 27 V S . A B C D
D. V S . C D M N = 1 2 V S . A B C D
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a mặt bên SAB là tam giác đều, mặt bên SCD là tam giác vuông cân tại S, gọi M là điểm thuộc đường thẳng CD sao cho BM vuông góc với SA. Tính thể tích V của khối chóp S.BDM
A. V = a 3 3 48
B. V = a 3 3 24
C. V = a 3 3 32
D. V = a 3 3 16
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều, mặt bên SCD là tam giác vuông cân tại S. Gọi M là điểm thuộc đường thẳng CD sao cho BM vuông góc với SA. Tính thể tích V của khối chóp S.BDM.
A. V = a 3 3 16 .
B. V = a 3 3 24 .
C. V = a 3 3 32 .
D. V = a 3 3 48 .
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều, mặt bên SCD là tam giác vuông cân tại S. Gọi M là điểm thuộc đường thẳng CD sao cho BM vuống góc với SA. Tính thể tích V của khối chóp S.BDM?
A. V = a 3 3 16
B. V = a 3 3 24
C. V = a 3 3 32
D. V = a 3 3 48
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và A B C ^ = 60 ° . Hình chiếu vuông góc của điểm S lên mặt phẳng A B C D trùng với trọng tâm tam giác ABC. Gọi φ là góc giữa đường thẳng SB với mặt phẳng S C D , tính sin φ biết rằng S B = a .
A. sin φ = 2 2
B. sin φ = 2 3
C. sin φ = 3 2
D. sin φ = 6 2