Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Cạnh SA vuông góc với đáy và SA= y. Trên cạnh AD lấy điểm M sao cho A M = x . Biết rằng x 2 + y 2 = a 2 . Tìm giá trị lớn nhất của thể tích khối chóp S.ABCM
A. a 3 3 4
B. a 3 8
C. a 3 3 2
D. a 3 3 8
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA = y > 0 và vuông góc với đáy. Trên AD lấy điểm M, đặt AM = x (0 < x < a) . Nếu x 2 + y 2 = a 2 thì giá trị lớn nhất của thể tích S.ABCM bằng:
A. a 3 3 3
B. a 3 3 8
C. a 3 3 24
D. 3 a 3 3 8
Cho hình chóp .S ABCD có đáy ABCD là hình bình hành. Hai điểm M, N thuộc các cạnh AB và AD (M, N không trùng với A, B, D). sao cho A B A M + 2. A D A N = 4. Kí hiệu V, V 1 lần lượt là thể tích của các khối chóp S . A B C D v à S . M B C D N . Tìm giá trị lớn nhất của V 1 V
A. 2 3
B. 3 4
C. 1 6
D. 14 17
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, S A ⊥ A B C D
biết S A = y ; M ∈ A D ; A M = x ; x 2 + y 2 = a 2
. Khi đó V S . A B C M m a x là
A. a 3 3 4
B. a 3 8
C. a 3 3 2
D. a 3 3 8
Cho hình chóp S.ABCD với đáy ABCD là hình vuông cạnh a, cạnh bên SB = b và tam giác SAC cân tại S. Trên cạnh AB lấy điểm M với AM = x (0<x<a). Mặt phẳng ( α ) qua M song song với AC, SB và cắt BC, SC, SA lần lượt tại N, P, Q. Xác định x để diện tích thiết diện MNPQ đạt giá trị lớn nhất.
A. x = a 4
B. x = a 3
C. x = a 2
D. x = a 5
Cho hàm số f x = a x + b c x + d với a , b , c , d ∈ R có đồ thị hàm số y=f'(x) như hình vẽ bên. Biết rằng giá trị lớn nhất của hàm số y=f(x) trên đoạn [-3;-2] bằng 8. Giá trị của f(2) bằng.
A. 2
B. 5
C. 4
D. 6
Cho hình chóp S.ABCD với đáy ABCD là hình vuông cạnh a, cạnh bên SB = b và tam giác SAC cân tại S. Trên cạnh AB lấy điểm M với AM = x 0 < x < α . Mặt phẳng α qua M song song với AC, SB và cắt BC, SC, SA lần lượt tại N, P, Q. Xác định x để diện tích thiết diện MNPQ đạt giá trị lớn nhất.
A. x = a 4
B. x = a 3
C. x = a 2
D. x = a 5
Cho hình chóp S.ABCD có đáy là hình thang cân, S A ⊥ A B C D , A D = 2 B C = 2 A B . Trong tất cả các tam giác mà 3 đỉnh lấy từ 5 điểm S, A, B, C, D có bao nhiêu tam giác vuông?
A. 3
B. 6
C. 5
D. 7
Trong không gian Oxyz cho đường thẳng d: x 2 = y 2 = z + 3 - 1 và mặt cầu (S): ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 5 ) 2 = 36 . Gọi Δ là đường thẳng đi qua A(2;1;3) vuông góc với đường thẳng (d) và cắt (S) tại 2 điểm có khoảng cách lớn nhất. Khi đó đường thẳng Δ có một vectơ chỉ phương là u → ( 1 ; a ; b ) . Tính a + b
A. 4
B. -2
C. - 1 2
D. 5