Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, A C = 2 3 a , B D = 2 a , hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ điểm O đến (SAB) bằng a 3 4 . Thể tích của khối chóp S.ABCD là:
A. a 3 3 12
B. a 3 3 3
C. a 3 3 18
D. a 3 3 16
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông tâm O. Khoảng cách từ điểm O đến mặt phẳng (SCD) bằng a 14 7 và góc giữa đường thẳng SB với mặt đáy bằng 60°. Tính thể tích V của khối chóp S.ABC theo a.
A. V = 3 a 3 2 2
B. V = 3 a 3 2 4
C. V = 3 a 3 2 16
D. V = 9 a 3 2 4
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; A B = B C = 1 , A D = 2. Các mặt chéo S A C và S B D cùng vuông góc với mặt đáy A B C D . Biết góc giữa hai mặt phẳng S A B và A B C D bằng 60 0 (tham khảo hình vẽ bên). Khoảng cách từ điểm D đến mặt phẳng S A B là
A. 2 3 3
B. 3
C. 2 3
D. 3 3
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Hình chiếu vuông góc của S trên mặt đáy (ABCD) trùng với trung điểm AB. Biết AB = a, BC = 2a, BD = a 10 . Góc giữa hai mặt phẳng (SBD) và mặt phẳng đáy là 600. Tính thể tích V của khối chóp S.ABCD theo a
A. V = 3 30 a 3 8
B. V = 30 a 3 4
C. V = 30 a 3 12
D. V = 30 a 3 8
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Hình chiếu vuông góc của S trên mặt đáy (ABCD) trùng với trung điểm AB. Biết AB =a, BC =2a, B D = a 10 . Góc giữa hai mặt phẳng (SBD) và mặt phẳng đáy là 60 độ. Tính thể tích V của khối chóp S.ABCD theo a.
A. V = 3 30 a 3 8
B. V = 30 a 3 4
C. V = 30 a 3 12
D. V = 30 a 3 8
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Hình chiếu vuông góc của S trên mặt đáy (ABCD) trùng với trung điểm AB. Biết A B = a , B C = 2 a , B D = a 10 Góc giữa hai mặt phẳng (SBD) và mặt phẳng đáy là 60 ° . Tính thể tích V của khối chóp S.ABCD theo a.
A. V = 3 30 a 3 8
B. V = 30 a 3 4
C. V = 30 a 3 12
D. V = 30 a 3 8
Cho hình chóp S.ABCD có đáy là hình thang cân với đáy AB=2a, AD=BC=CD=a, mặt bên SAB là tam giác cân đỉnh S và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ A tới mặt phẳng (SBC) bằng 2 a 15 5 , tính theo a thể tích V của khối chóp
A. V = 3 a 3 3 4
B. V = 3 a 3 4
C. V = 3 a 3 5 4
D. V = 3 a 3 2 4
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với (ABCD). Biết góc tạo bởi mặt phẳng (SCD) và đáy bằng 30 0 và khoảng cách từ A tới mặt phẳng (SCD) bằng a. Khi đó thể tích V của khối chóp S.ABCD bằng bao nhiêu?
A. 8 3 a 3 3 .
B. 2 3 a 3 3 .
C. 4 3 a 3 9 .
D. 8 3 a 3 9 .
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, A B = a , B C = a 3 . Tam giác SAC vuông S. Hình chiếu vuông góc của S xuống mặt phẳng đáy trùng với trung điểm H của đoạn AO. Khoảng cách từ điểm C đến mặt phẳng (SAB) theo a là
A. 2 a 15 5
B. a 15 10
C. 2 a 15 3
D. 8 a 15 3