Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB=BC=a, AD=2a, SA vuông góc với mặt đáy (ABCD), SA=a. Gọi M, N lần lượt là trung điểm của SB, CD. Tính cosin của góc giữa đường thẳng MN và (SAC).
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B, AB = BC = a, AD = 2a. Biết SA vuông góc với đáy (ABCD) và SA = a. Gọi M, N lần lượt là trung điểm SB, CD. Tính sin góc giữa đường thẳng MN và mặt phẳng (SAC).
A. 5 5
B. 55 10
C. 3 5 10
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=a; AD=2a, cạnh bên SA vuông góc với đáy và thể tích khối chóp S.ABCD bằng 2 a 3 3 . Tính số đo góc giữa đường thẳng SB với mặt phẳng (ABCD).
A. 30 0
B. 60 0
C. 45 0
D. 75 0
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh AB=a, AD=a 3 . Cạnh bên SA=a 2 và vuông góc với mặt phẳng đáy. Góc giữa đường thẳng SB và mặt phẳng (SAC)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật,AB = 1,AD = 2. cạnh bên SA vuông góc với đáy và SA = 5 . Sin của góc giữa đường thẳng SB và mặt phẳng (SAC) bằng
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, A B = 1 , A D = 2 , cạnh bên SA vuông góc với đáy và S A = 5 . Sin của góc giữa đường thẳng SB và mặt phẳng (SAC) bằng
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với cạnh đáy AD và BC. AD = 2a,AB = BC = CD = a, B A D ⏞ = 60 o . Cạnh bên SA vuông góc với mặt phẳng (ABCD) và SD tao với mặt phẳng (ABCD) góc 45 o . Tính theo a thể tích V của khối chóp S.ABCD ?
A. V = a 3 3 6 .
B. V = a 3 3 2 .
C. V = 3 a 3 3 2 .
D. V = a 3 3 .
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, B và AD = 2a, AB = BC = SA = a. Cạnh bên SA vuông góc với đáy, với M là trung điểm AD. Tính khoảng cách h từ M đến mặt phẳng (SCD).
A. h = a 3
B. h = a 6 6
C. h = a 6 3
D. h = a 3 6
Cho hình chóp S.ABCD có đáy là hình thang vuông tại C và D, A D = 3 a , B C = C D = 4 a ; cạnh bên SA vuông góc với đáy và S A = a 3 . Gọi M là điểm nằm trên cạnh AD sao cho A M = a và N là trung điểm của CD. Gọi α là số đo của góc giữa hai đường thẳng SM và BN. Khi đó cos α bằng