Đáp án D
Dựng A H ⊥ C D suy ra AH là đường vuông góc cung của SA vad CD Ta có:
S A C D = 1 2 A D . d C ; A D = 1 2 .3 a . A B = 3 a 2 2 .
Lại có:
C D = A B 2 + A D − B C 2 = a 5 ⇒ A H = 2 S A C D C D = 3 a 5
Đáp án D
Dựng A H ⊥ C D suy ra AH là đường vuông góc cung của SA vad CD Ta có:
S A C D = 1 2 A D . d C ; A D = 1 2 .3 a . A B = 3 a 2 2 .
Lại có:
C D = A B 2 + A D − B C 2 = a 5 ⇒ A H = 2 S A C D C D = 3 a 5
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B; AB = BC = a; AD = 2a; S A ⊥ A B C D . Góc giữa mặt phẳng ( SCD ) và ( ABCD ) bằng 45 o . Gọi M là trung điểm AD. Tính theo a thể tích V khối chóp S.MCD và khoảng cách d giữa hai đường thẳng SM và BD
A. V = a 3 2 6 d = a 22 11
B. V = a 3 6 6 d = a 22 11
C. V = a 3 2 6 d = a 22 22
D. V = a 3 6 6 d = a 22 22
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Hình chiếu vuông góc của S trên đáy ABCD trùng với trung điểm AB. Biết A B = a , B C = 2 a , B D = a 10 . Góc giữa hai mặt phẳng (SBD) và đáy là 60 ° . Tính d là khoảng cách từ A đến mặt phẳng (SCD) gần với giá trị nào nhất trong các giá trị sau đây ?
A. 0,80a
B. 0,85a
C. 0,95a
D. 0,98a
Cho hình chóp S.ABCD có đáy là hình thang cân, S A ⊥ A B C D , A D = 2 B C = 2 A B . Trong tất cả các tam giác mà 3 đỉnh lấy từ 5 điểm S, A, B, C, D có bao nhiêu tam giác vuông?
A. 3
B. 6
C. 5
D. 7
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với A B = B C = a , A D = 2 a , S A = a . Tính theo a khoảng cách giữa hai đường thẳng AC, SD.
A. a 6 6
B. a 6 2
C. a 6 3
D. a 6 3
Cho hình chóp S . A B C D có đáy là hình vuông cạnh a . S A = a v à S A vuông góc với đáy. Tính khoảng cách d giữa hai đường chéo nhau SC và BD
A. d = a 3 2
B. d = a 3 3
C. d = a 6 6
D. d = a 6 3
Trong không gian Oxyz cho đường thẳng d: x 2 = y 2 = z + 3 - 1 và mặt cầu (S): ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 5 ) 2 = 36 . Gọi Δ là đường thẳng đi qua A(2;1;3) vuông góc với đường thẳng (d) và cắt (S) tại 2 điểm có khoảng cách lớn nhất. Khi đó đường thẳng Δ có một vectơ chỉ phương là u → ( 1 ; a ; b ) . Tính a + b
A. 4
B. -2
C. - 1 2
D. 5
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB=BC= a, AD=2a, SA vuông góc với mặt phẳng đáy và SA = a. Tính theo a khoảng cách giữa hai đường thẳng AC và SD
A. 6 a 6
B. 6 a 2
C. 6 a 3
D. 3 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB=BC=a, AD=2a vuông góc với mặt phẳng đáy và SA=a. Tính theo a khoảng cách giữa hai đường thẳng AC và SD
A. 6 a 6
B. 6 a 2
C. 6 a 3
D. 3 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là trung điểm H của AB, tam giác SAB vuông cân tại S. Biết SH = a, CH= 3 a. Tính khoảng cách giữa hai đường thẳng SD và CH
A. 2 15 a 3
B. 2 18 a 3
C. 2 22 a 11
D. 14 a 2