Bài 1: cho hình chóp S.ABCD có đáy ABCD là hình thang , BAD=ABC= 90 độ. Cạnh AB=BC=a, AD=2a, SA vuông góc ( ABCD ), Sa=2a. Gọi M,N lần lượt là trung điểm của SA và SD. Tính theo a thể tích khối chóp S.BCNM
Bài 2: cho hình chóp tứ giác đều S.ABCD có AB = a; SA = a\(\sqrt{2}\) . Gọi M,N lần lượt là trung điểm của SA,SB,SD. Tính theo a thể tích của khối tứ diện A.MNP
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B, AB = BC = a, AD = 2a. Biết SA vuông góc với đáy (ABCD) và SA = a. Gọi M, N lần lượt là trung điểm SB, CD. Tính sin góc giữa đường thẳng MN và mặt phẳng (SAC).
A. 5 5
B. 55 10
C. 3 5 10
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Biết SA ⊥ (ABCD), AB=BC=a, SA=a 2 , AD=2a. Gọi E là trung điểm của AD. Tính bán kính mặt cầu đi qua các điểm S, A, B, C, E.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = a và SA vuông góc với đáy. Gọi M là trung điểm SB, N là điểm thuộc cạnh SD sao cho SN = 2ND. Tính tỉ số thể tích V A C M N V S A B C D
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA=a và SA vuông góc với đáy. Gọi M là trung điểm SB, N là điểm thuộc cạnh SD sao cho SN=2ND. Tính thể tích V của khối tứ diện ACMN.
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, SA=a và SA vuông góc với đáy. Gọi M là trung điểm SB, N là điểm thuộc cạnh SD sao cho SN=2SD. Tính thể tích V của khối tứ diện ACMN.
A. V = 1 12 a 3
B. V = 1 6 a 3
C. V = 1 8 a 3
D. V = 1 36 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB=BC=a, AD=2a, SA vuông góc với mặt đáy (ABCD), SA=a. Gọi M, N lần lượt là trung điểm của SB, CD. Tính cosin của góc giữa đường thẳng MN và (SAC).
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, SA = a và SA vuông góc với đáy. Gọi M là trung điểm SB, N thuộc cạnh SD sao cho SN = 2ND. Tính thể tích V của khối tứ diện ACMN.
A. V = 1 8 a 3
B. V = 1 6 a 3
C. V = 1 36 a 3
D. V = 1 12 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SA ⊥ (ABCD), SA=a 3 . Gọi M là trung điểm của SD. Tính khoảng cách giữa hai đường thẳng AB và CM.