Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật biết AB=a; AD= 2a; SA vuông góc với đáy, SA=a√2. Xác định và tính góc giữa. a) Các đường thẳng SB, SC, SD với mp đáy. b) SC với các mp (SAD) và ( SAB). c) SA với mp (SCD). d) SB và (SAC).
Câu 2. Cho hình chóp S.ABCD có đáy là hình chữ nhật, SA vuông góc với mặt đáy, vẽ BH vuông góc với AC tại H. a. Chứng minh rằng BH vuông góc (SAC). b. Tính góc giữa SC với mặt đáy, biết rằng SA=2a; AB=a; BC= a/5
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=2a, BC=a. Các cạnh bên của hình chóp cùng bằng a 2 . Tính góc giữa hai đường thẳng AB và SC.
A. 45 °
B. 30 °
C. 60 °
D. arctan 2
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 2a, BC =a. Hình chiếu vuông góc H của đỉnh S trên mặt phẳng đáy là trung điểm của cạnh AB, góc giữa đường thẳng SC và mặt phẳng đáy bằng 60 0 . Tính góc giữa hai đường thẳng SB và AC
A. 60 0
Bài 4. Cho hình chóp S.ABC , hình chiếu của S lên mặt phẳng (ABC) là trung điểm H của AC, đáy ABC là tam giác vuông ở B, SA = 2a, AB = av3, BC = a. Tính góc (SH,(SAB)). Bài 5. Cho hình chóp S.ABCD, SA1(ABCD), đáy ABCD là hình vuông cạnh a, góc giữa mặt phăng (SBC) và (ABCD) bằng 30°. Tính góc (AD.(SCD)).
Cho hình chóp SABCD. Đáy là hình vuông cạnh 2a; SA= a căn 5. SA vuông góc với đáy a) Tính góc giữa SC và (SAD); góc giữa SB và (SAC) b)Tính góc giữa (SBC) và (ABCD) c)Tính khoảng cách từ SD đến BC
Cho hình chóp SABCD. Đáy là hình vuông cạnh 2a; SA= a căn 5. SA vuông góc với đáy a) Tính góc giữa SC và (SAD); góc giữa SB và (SAC) b)Tính góc giữa (SBC) và (ABCD) c)Tính khoảng cách từ SD đến BC
Cho hình chóp S.ABCD đáy là hình thang vuông tại A và B, AB = BC = a, AD = 2a, SA vuông góc với đáy, SA = a. Gọi M, N lần lượt là trung điểm của SB, CD. Tính côsin góc giữa MN và (SAC)
A . 1 5
B . 3 5 10
C . 55 10
D . 2 5
Cho hình chóp tứ giác S.ABCD có đáy là hình chữ nhật, AB = a, AD = a 2 . Biết SA ⊥ ABCD và góc giữa đường thẳng SC với mặt phẳng đáy bằng 45 0 . Thể tích khối chóp S. ABCD bằng:
A . a 3 2
B . 3 a 3
C . a 3 6
D . a 3 6 3