Đáp án A
Vì S A B ⊥ A B C D S A D ⊥ A B C D ⇒ S A B ∩ S A D = S A ⊥ A B C D
Thể tích của khối chóp S.ABCD là: V = 1 3 S A . S A B C D = 1 3 m S A
Đáp án A
Vì S A B ⊥ A B C D S A D ⊥ A B C D ⇒ S A B ∩ S A D = S A ⊥ A B C D
Thể tích của khối chóp S.ABCD là: V = 1 3 S A . S A B C D = 1 3 m S A
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên (SAB) là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết rằng góc giữa mặt phẳng (SAD) và đáy bằng 45 ° . Tính thể tích V của khối chóp S.ABCD
A. V = a 3 3 6
B. V = a 3 2 3
C. V = a 3 6
D. V = a 3 5 6
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy, góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 30 ° . Tính tỉ số 3 V a 3 biết V là thể tích của khối chóp S.ABCD?
A. 3 12
B. 3 12
C. 3 3
D. 8 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết rằng, góc giữa mặt phẳng (SCD) và mặt phẳng đáy bằng 60 ° . Tính thể tích V của khối chóp S.ABCD.
A. V = a 3 15 6
B. V = a 3 3 6
C. V = a 3 3 3
D. V = a 3 15 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=1 và AD= 3 Cạnh bên SA vuông góc với mặt phẳng đáy vầcnhj SC tạo với mặt phẳng (ABCD) một góc 60 ° Tính thể tích V của khối chóp S,ABCD
A. V=3
B. V=2
C. V=6
D. V=1
Cho hình chóp S.ABCD có đáy là hình vuông, mặt bên (SAB) là một tam giác đều nằm trong mặt phẳng vuông góc với mặt đáy (ABCD) và có diện tích bằng 27 3 4 (đvdt). Một mặt phẳng đi qua trọng tâm tam giác SAB và song song với mặt đáy (ABCD) chia khối chóp S.ABCD thành hai phần, tính thể tích V của phần chứa điểm S?
A. V = 24
B. V = 8
C. V = 12
D. V = 36
Cho hình chóp S.ABCD có đáy là hình vuông, mặt bên (SAB) là một tam giác đều nằm trong mặt phẳng vuông góc với mặt đáy (ABCD) và có diện tích bằng 27 3 4 (đvdt). Một mặt phẳng đi qua trọng tâm tam giác SAB và song song với mặt đáy (ABCD) chia khối chóp S.ABCD thành hai phần, tính thể tích V của phần chứa điểm S?
A. V = 24
B. V = 8
C. V = 12
D. V = 36
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với (ABCD). Biết góc tạo bởi mặt phẳng (SCD) và đáy bằng 30 0 và khoảng cách từ A tới mặt phẳng (SCD) bằng a. Khi đó thể tích V của khối chóp S.ABCD bằng bao nhiêu?
A. 8 3 a 3 3 .
B. 2 3 a 3 3 .
C. 4 3 a 3 9 .
D. 8 3 a 3 9 .
Cho hình chóp S.ABCD có đáy là hình vuông, gọi M là trung điểm của AB. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết SD = a 3 , SC tạo với mặt phẳng đáy (ABCD) một góc Thể tích khối chóp S.ABCD theo a là
A. 4 a 3 3 .
B. 3 a 3 10 .
C. 4 a 3 15 5 .
D. 2 a 3 15 3 .
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh A B = a , B C = 2 a . Hai mặt bên (SAB) và (SAD) cùng vuông góc với mặt phẳng đáy (ABCD) cạnh S A = a 15 . Thể tích của khối chóp S.ABCD bằng
A. 2 a 3 15
B. a 3 15 3
C. 2 a 3 15 3
D. 2 a 3 15 6