Gọi O là giao điểm của AC và BD
Trong mp(SBD), gọi G là giao điểm của MN và SO
G∈MN⊂(MNP)
G∈SO⊂(SAC)
Do đó: G∈(MNP) giao (SAC)(1)
P∈SC⊂(SAC)
P∈(MNP)
Do đó: P∈(MNP) giao (SAC)(2)
Từ (1),(2) suy ra (MNP) giao (SAC)=GP
Gọi K là giao điểm của GP và SA
K∈GP⊂(MNP)
K∈SA⊂(SAB)
DO đó: K∈(MNP) giao (SAB)(3)
M∈(MNP)
M∈SB⊂(SAB)
DO đó: M∈(MNP) giao (SAB)(4)
Từ (3),(4) suy ra (MNP) giao (SAB)=MK
K∈GP⊂(MNP)
K∈SA⊂(SAD)
DO đó: K∈(MNP) giao (SAD)(5)
N∈(MNP)
N∈SD⊂(SAD)
Do đó: N∈(MNP) giao (SAD)(6)
Từ (5),(6) suy ra (MNP) giao (SAD)=NK
Trong mp(SBC), gọi E là giao điểm của PM và BC
Xét ΔSBD có M,N lần lượt là trung điểm của SB,SD
=>MN là đường trung bình của ΔSBD
=>MN//BD
E∈PM⊂(MNP)
E∈BC⊂(ABCD)
Do đó; E∈(MNP) giao (ABCD)
Xét (MNP) và (ABCD) có
E∈(MNP) giao (ABCD)
MN//BD
Do đó: (MNP) giao (ABCD)=xy, xy đi qua E và xy//MN//BD