Cho hình chóp S.ABCD có đáy ABCD là hình thang đáy lớn AD. M, N lần lượt là trung điểm SB, SC và P là điểm nằm trên đoạn SD sao cho PD = 2SP. a) Tìm giao tuyến của mp(SAB) và mp(SCD); giao tuyến của mp (SAC) và mp (SBD). b) Tìm giao tuyến của mp (SAD) và mp(SBC) c) Tìm giao điểm E của CD và mp (MNP); giao F của MP và (ABCD). CỨU EM VỚI QUÝ DỊ ƠI!!!
Bài 1: Cho hình chóp S.ABCD đáy là hình bình hành. Gọi M, N, P lần lượt là trung điểm SD, SC, BC.
a) Cm: MN// (SAB)
b) Cm: (MNP)//(SAB). Suy ra MP//(SAB)
c/ Tìm giao tuyến của (MNP) với (ABCD)
d/ Tìm thiết diện của (PMN) với S.ABCD
e/ Tìm giao điểm của SA với (MBC)f/ Tìm giao điểm của MP với (SAC)
mong mọi ngừi giúp em
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, E, F lần lượt là trung điểm SB, SD và I là điểm nằm trên đoạn AB sao cho IA-3IB. O là giao điểm của AC và BD. a) Tìm giao tuyến của mp(SAC) và mp(SBD); giao tuyến của mp (SEF) và mp (ACD). b) Tìm giao tuyến của (ABCD) và (AEF). c) Tìm giao điểm H của SA và mp (EFI); giao điểm K của IF và (SAC). NỐT LUN CÂU NÀY KU Ạ , EM XIN CẢM TẠ
Cho hình chóp S.ABCD có đáy là hình bình hành:
a, Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD).
b, Gọi M,N lần lượt là các điểm trên các cạnh SB và SC sao cho MS=2MB, NS=NC. Mặt phẳng (AMN) cắt cạnh SD tại K. Chứng minh MK//(ABCD)
Cho hình chóp S.ABCD có đáy là hình thoi ABCD và có cạnh SA vuông góc với mặt phẳng (ABCD). Gọi I và K là hai điểm lần lượt lấy trên hai cạnh SB và SD sao cho SI/SB = SK/SD . Chứng minh:
a) BD ⊥ SC
b) IK ⊥mp(SAC)
cho hình chóp s.abcd có đáy abcd là hình bình hành. gọi i,j,k theo thứ tự là trung điểm của các cạnh ab, cd và sa. a) tìm giao tuyến của hai mp (SAB)và(SCD) b) CM: IJ // (SCD) c) tìm giao điểm của đường thẳng SD với mp(IJK)
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi M là trung điểm của SD. Gọi I là giao điểm của BM với mp (SAC). Tìm mệnh đề đúng?
A. BI= 2IM
B. BI= IM
C. BI= 3IM
D. 2BI= IM
Bt2: cho hình chóp S.ABCD đáy là tứ giác lồi có AB>CD .gọi M,N lần lượt là trung điểm của cạnh SA và SD .a) tìm giao tuyến (SAB) và (SCD).b) tìm giao tuyến của (MNC) và (ABCD).c)tìm giao điểm của MN và (ABN).d) tìm thiết diện của hình chóp vs mp (BMN)