Chọn đáp án A
Ta có ABCD là hình bình hành nên CD//AB.
Lại có S A ⊥ A B C D ⇒ S A ⊥ A B
⇒ ∆ S A B vuông tại A.
Suy ra
Trong tam giác SAB vuông tại A có
⇒ S B A ⏜ = 60 0
Chọn đáp án A
Ta có ABCD là hình bình hành nên CD//AB.
Lại có S A ⊥ A B C D ⇒ S A ⊥ A B
⇒ ∆ S A B vuông tại A.
Suy ra
Trong tam giác SAB vuông tại A có
⇒ S B A ⏜ = 60 0
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, A B = a , S A = a 3 vuông góc với (ABCD). Tính góc giữa hai đường thẳng SB và CD.
A. 60 0
B. 30 0
C. 45 0
D. 90 0
Cho hình chóp S.ABCD có đáy là hình bình hành và SA=SB=SC=11, S A B ^ = 30 0 , S B C ^ = 60 0 và S C A ^ = 45 0 . Tính khoảng cách d giữa hai đường thẳng AB và SD?
A. d = 4 11
B. d = 2 22
C. d = 22 2
D. d = 22
Cho hình chóp S.ABCD có đáy là hình bình hành và SA=SB=SC=11, S A B ^ = 30 0 , S B C ^ = 60 0 và S C A ^ = 45 0 . Tính khoảng cách d giữa hai đường thẳng AB và SD?
A. 4 11
B. 2 22
C. 22 2
D. 22
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 2a; BC = a. Hình chiếu vuông góc H của đỉnh S trên mặt phẳng đáy là trung điểm của cạnh AB, góc giữa đường thẳng SC và mặt phẳng đáy bằng 600. Tính cosin góc giữa hai đường thẳng SB và AC.
A. 2 35
B. 2 7
C. 2 5
D. 2 7
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O , A B = a , B C = a 3 . Tam giác SAO cân tại S, mặt phẳng (SAD) vuông góc với mặt phẳng (ABCD) góc giữa đường thẳng SD và mặt phẳng (ABCD) bằng 60 0 . Tính khoảng cách giữa 2 đường thẳng SB và AC
A. a 3 2
B. 3 a 2
C. a 2
D. 3 a 4
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a. Cạnh bên SA = a và SA vuông góc với đáy. Tính góc giữa đường thẳng SB và CD
A. 90 ∘
B. 60 ∘
C. 30 ∘
D. 45 ∘
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, góc giữa SC và mặt đáy bằng 45°. Tính khoảng cách d giữa hai đường thẳng SB và AC.
A. d = a 10 5
B. d = 2 2 a 5
C. d = 3 a 5
D. d = 2 5 a 5
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, AB=a. Tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ABCD biết góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 45 0 .
A. a 3 3 4
B. a 3 3 12
C. a 3 2 12
D. a 3 2 4
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Hình chiếu vuông góc của S trên mặt đáy (ABCD) trùng với trung điểm AB. Biết AB = a, BC = 2a, BD = a 10 . Góc giữa hai mặt phẳng (SBD) và mặt phẳng đáy là 600. Tính thể tích V của khối chóp S.ABCD theo a
A. V = 3 30 a 3 8
B. V = 30 a 3 4
C. V = 30 a 3 12
D. V = 30 a 3 8