
Gọi M là trung điểm BC, suy ra A M ⊥ B C

Tam giác ABC đều cạnh a suy ra trung tuyến ![]()
Tam giác vuông SAM có ![]()
Chọn D.

Gọi M là trung điểm BC, suy ra A M ⊥ B C

Tam giác ABC đều cạnh a suy ra trung tuyến ![]()
Tam giác vuông SAM có ![]()
Chọn D.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABC) là một điểm nằm trên đoạn thẳng BC. Mặt phẳng (SAB) tạo với (SBC) một góc 60 o và mặt phẳng (SAC) tạo với (SBC) một góc φ thỏa mãn cos φ = 2 4 . Gọi α là góc tạo bởi SA và mặt phẳng (ABC). Tính tan α
A. 3 3
B. 2 2
C. 1 2
D. 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB=a, BC=2a, cạnh bên SA vuông góc với mặt đáy (ABC) và SA=3a. Gọi α là góc giữa hai mặt phẳng (SAC) và (SBC). Tính sin.
A. sin α = 1 3
B. sin α = 4138 120
C. sin α = 13 7
D. sin α = 7 5
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 3a. Gọi φ là góc giữa cạnh bên và mặt phẳng đáy. Tính tan φ .
A. tan φ = 3 2
B. tan φ = 2 3
C. tan φ = 2 3 3
D. tan φ = 2
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và A B C ^ = 60 ° . Hình chiếu vuông góc của điểm S lên mặt phẳng A B C D trùng với trọng tâm tam giác ABC. Gọi φ là góc giữa đường thẳng SB với mặt phẳng S C D , tính sin φ biết rằng S B = a .
A. sin φ = 2 2
B. sin φ = 2 3
C. sin φ = 3 2
D. sin φ = 6 2
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và A B C = 60 ° . Hình chiếu vuông góc của điểm S lên mặt phẳng (ABCD) trùng với trọng tâm tam giác ABC. Gọi φ là goc giữa đường thẳng SB và mặt phẳng (SCD), tính sin φ biết rằng SB = a.
A. sin φ = 1 4
B. sin φ = 1 2
C. sin φ = 3 2
D. sin φ = 2 2
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, AB = a. Biết S A B ^ = S C A ^ = 90 ° , S A = a 3 . Tính φ là góc tạo bởi hai mặt phẳng (SAB) và (SAC).
A. φ = 90 °
B. φ = 30 °
C. φ = 45 °
D. φ = 60 °
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy, diện tích tam giác SAB bằng a 2 . Gọi φ là góc giữa hai mặt phẳng (SCD) và (ABCD). Tính tan φ
tan φ
B. tan φ = 1
C. tan φ = 2
D. tan φ = 3
Cho hình chóp S.ABC có tam giác ABC cân tại B, A B = B C = a , A B C ^ = 120 ° v à S A B ^ = S C B ^ = 90 ° . Gọi φ là góc tạo bởi đường thẳng SA và mặt phẳng S B C . Tính thể tích khối chóp S.ABC, biết khoảng cách từ điểm S và mặt phẳng A B C nhỏ hơn 2a.
A. V S . A B C = a 3 3 12
B. V S . A B C = a 3 3 6
C. V S . A B C = a 3 3 4
D. V S . A B C = a 3 3 2
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, cạnh bên SA= 3 a vuông góc với mặt đáy. Côsin góc giữa hai mặt phẳng (SBC) và (ABC) bằng

A. 5 5
B. 2 5 5
C. 6 3
D. 3 3