Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lucifer

Cho hình chóp SABC có ABC=60 độ,AC=\(a\sqrt{3}\).Cạnh bên SA vuông góc với mặt phẳng đáy,SA=2a.Thể tích của khối cầu ngoại tiếp hình chóp S.ABC

Akai Haruma
18 tháng 6 2021 lúc 23:15

Lời giải:

Gọi $I$ là tâm mặt cầu ngoại tiếp hình chóp $S.ABC$, $K$ là tâm đường tròn ngoại tiếp $ABC$ thì $IK\parallel SA$.

Ta có:

\(IS=IA\Leftrightarrow (\overrightarrow{IS})^2=IA^2\)

\(\Leftrightarrow (\overrightarrow{IA}+\overrightarrow{AS})^2=IA^2\)

\(\Leftrightarrow AS^2+2\overrightarrow{IA}.\overrightarrow{AS}=0\)

\(\Leftrightarrow AS^2+2(\overrightarrow{IK}+\overrightarrow{KA})\overrightarrow{AS}=0\)

\(\Leftrightarrow AS^2+2\overrightarrow{IK}.\overrightarrow{AS}=0\)

Vì $\overrightarrow{IK}\parallel \overrightarrow{AS}$ nên tồn tại $k\in\mathbb{R}$ sao cho $\overrightarrow{IK}=k\overrightarrow{AS}$

Khi đó: $AS^2+2kAS^2=0$

$\Rightarrow k=-\frac{1}{2}$

$\Rightarrow \overrightarrow{IK}=\frac{-1}{2}\overrightarrow{AS}$

$\Rightarrow IK=\frac{1}{2}.AS=a$

Lại có:

$\frac{AC}{\sin B}=2AK\Rightarrow AK=a$

Áp dụng định lý pitago: $R=IA=\sqrt{IK^2+AK^2}=\sqrt{2}a$

Thể tích khối cầu:

$V=\frac{4}{3}\pi R^3=\frac{8\sqrt{2}}{3}\pi a^3$


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết