Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, góc giữa SC và mặt đáy bằng 45°. Tính khoảng cách d giữa hai đường thẳng SB và AC.
A. d = a 10 5
B. d = 2 a 2 5
C. d = a 3 5
D. d = 2 a 5 5
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy. Góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 60 0 . Tính theo a khoảng cách giữa 2 đường thẳng SB,AD?
A. a 3
B. a 3 2
C. a 3 3
D. a 3 5
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA = a 2 . Một mặt phẳng đi qua A vuông góc với SC cắt SB, SD, SC lần lượt tại B', D', C'. Thể tích khối chóp S. AB'C'D' là:
A. V = 2 a 3 3 9
B. V = 2 a 3 2 3
C. V = a 3 2 9
D. V = 2 a 3 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=a, AD=2a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách từ D đến (SBC) bằng 2 a 3 . Tính khoảng cách giữa hai đường thẳng SB và AC
A. a 10 10
B. a 10 5
C. 2 a 10 5
D. 2 a 5 5
Cho hình chóp S.ABCD có đáy là hình thang cân, B C ∥ A D , A B = B C = C D = a , A D = 2 a . Biết rằng hình chiếu vuông góc của đỉnh S xuống đáy trùng với trung điểm H của AD. Biết rằng S H = a khoảng cách giữa hai đường thẳng AD và SB bằng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, biết SA vuông góc với đáy (ABCD) và SA=2a Tính khoảng cách h giữa hai đường thẳng AC và SB.
Hình chóp S.ABC có đáy ABC là tam giác vuông tại C. Có CA = a,CB = b cạnh SA = h vuông góc với đáy. Gọi D là trung điểm của cạnh AB. Khoảng cách giữa hai đường thẳng AC và SD là?
A. a h a 2 + h 2 .
B. b h b 2 + 4 h 2 .
C. a h b 2 + 4 h 2 .
D. a h b 2 + 2 h 2 .
Cho hình chóp SABCD có đáy ABCD là hình chữ nhật, AB=a. Cạnh bên SA vuông góc với đáy và SA=a. Góc giữa đường thẳng SB và CD là:
A. 90 o
B. 60 o
C. 30 o
D. 45 o
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy và SA=a, AB=BC=a. Gọi M là điểm thuộc AB sao cho . Tính khoảng cách d từ điểm S đến đường thẳng CM.