Cho tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm của BC. Gọi D là điểm đối xứng của A qua M.
a. Chứng minh tứ giác ABDC là hình chữ nhật
b. Gọi H là trung điểm của AB, N là điểm đối xứng của M qua H. Chứng minh tứ giác ACMN là hình bình hành
c. Chứng minh tứ giác AMBN là hình thoi
d. Vẽ DK vuông góc với BC tại K. Gọi I, J lần lượt là trung điểm của BK, AC. Đường thẳng vuông góc với DI tại I cắt BD tại Q. Chứng minh : Q, I, J thẳng hàng
Bài 1. Chi tam giác MNP. Gọi I, K lần lượt là trung điểm của MN, MP.
a) Chứng minh IK // NP
b) Cho biết Q là điểm đối xứng với I qua K. Chứng minh tứ giác MIQP là hình bình hành
Bài 4: Cho tam giác ABC vuông tại B. AD là phân giác góc A. Gọi M,N,I lần lượt là trung
điểm của AD, AC, CD.
a) Chứng minh tứ giác MNID là hình bình hành?
b) Chứng minh tứ giác BMNI là hình thang cân.
c) Gọi K là điểm đối xứng với B qua N. Chứng minh tứ giác BAKC là hình bình hành
d) Khi góc A = 60 0 . Tính số đo các góc của hình thang BMNI?
Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.
a. Chứng minh tứ giác ABDC là hình chữ nhật.
b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.
c. Chứng minh tứ giác AEKC là hình bình hành.
d. Tìm điều kiện để hình thoi AKBE là hình vuông.
Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.
a. Chứng minh: M và E đối xứng nhau qua AB.
b. Chứng minh: AMBE là hình thoi.
c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM
Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.
a. Chứng minh tứ giác BHCD là hình bình hành.
b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH
cho hình bình hành MNPQ có MN = 2 PQ lấy K, H lần lượt là trung điểm MN , QP . Lấy J đối xứng Q qua M . chứng minh :
a , tứ giác MJNP là hình bình hành , từ đó suy ra J, K, P thẳng hàng
b , tứ giác MKHQ là hình thoi
c, góc QKP = 90 độ
Cho hình bình hành ABCD có AD=2AB, góc A=60 độ. Gọi EF lần lượt là trung điểm BC và AD.
a/ Chứng minh: AE vuông góc với BF.
b/ Chứng minh: BFDC là hình thang cân.
c/ Tính góc ADB?
d/ Lấy M đối xứng với A qua B. Chứng minh: Tứ giác BMCD là hình chữ nhật, suy ra M, E, D thẳng hàng.
cho hình bình hành ABCD có BC = 2AB và góc A = 60 độ . gọi E , F theo thứ tự là trung điểm của BC và AD. I là điểm đối xứng của A qua B
a, chứng minh tứ giác ABEF là hình thoi.
b, chứng minh tứ giác AIEF là hình thang cân
c, chứng minh tứ giác BICD là hình chữ nhật
d,tính số đo của góc AED
e, Cho AB=10cm. Tính diện tích BICD
Cho hình bình hành ABCD có AD=2AB, góc A=60 độ. Gọi E, F lần lượt là trung điểm BC và AD.
a/ Chứng minh: AE vuông góc với BF.
b/ Chứng minh: tứ giác BFDC là hình thang cân.
c/ Lấy M đối xứng với A qua B. Chứng minh: Tứ giác BMCD là hình chữ nhật.
Cho hình bình hành ABCD có AD = 2AB, góc A = 60 độ. Gọi E, F lần lượt là trung điểm của BC và AD.
a/ Chứng minh tứ giác ABEF là hình thoi.
b/ Chứng minh tứ giác BCDF là hình thang cân.
c/ Lấy M đối xứng A qua B. Chứng minh M, E, D thẳng hàng.