cho hình bình hành ABCD. Vẽ một đường thẳng bất kì d qua A cắt BD tại E,cắt BC tại F và cắt tia DC tại G
a) chứng minh tam giác AED và tam giác FEB đồng dạng, chứng minh tam giác GED và tam giác AEB đồng dạng
b)chứng minh AE mũ 2 = FE.EG
c) Khi đường thẳng d không thay đổi qua A, chứng minh rằng tích FB.GD không đổi
Cho hình bình hành ABCD. Gọi O là giao điểm hai đường chéo AC và BD. Qua điểm O, vẽ đường thẳng a cắt hai đường thẳng AD, BC lần lượt tại E, F. Qua O vẽ đưòng thẳng b cắt hai cạnh AB, CD lần lượt tại K, H. Chứng minh tứ giác EKFH là hình bình hành
. Cho hình bình hành ABCD. Gọi O là giao điểm hai đường chéo AC và BD. Qua điểm O, vẽ đường thẳng a cắt hai đường thẳng AD, BC lần lượt tại E, F, vẽ đường thẳng b cắt hai cạnh AB, CD lần lượt tại K, H. Chứng minh tứ giác EKFH là hình bình hành
Cho hình bình hành ABCD. Đường thẳng kẻ từ điểm A cắt đường chéo BD tại H, cắt cạnh BC tại I , cắt tia DC tại K . Chứng minh rằng AH2 = HI . HK
Cho hình bài hành ABCD , O là giao điểm hai đường chéo. Qua O vẽ đường thẳng cắt hai cạnh AB và CD tại E và F . Qua O vẽ hai đường thẳng cắt hai cạnh AD và BC ở G và H . Chứng minh rằng EGFH là hình bình hành
Cho hình bình hành ABCD,qua A vẽ tia Ax cắt đường chéo BD tại M, cắt BC tại N và cắt DC tại K.
a)So sánh BM/DM và MA/MK ; MB/MD và MN/MA
b)chứng minh MA^2=MNxMK
Cho hình bình hành ABCD gọi O la giao điểm của hai đường chéo AC và BD. Qua O vẽ đường thẳng a cắt 2 đường thẳng AD và BC lần lượt tại E, F; vẽ đường thẳng b cắt 2 đường thẳng AB và BD lần lượt tại K, H. Chứng minh EKFH là hình bình hành
1 ) Cho tam giác ABC . Phân giác góc A cắt cạnh BC tại d . Qua d vẻ đường thẳng song song với AB , đường này cắt AC tại E . Đường thẳng qua E // BC cắt AB tại F
- Chứng minh : AE = BF
2) Cho hình bình hành ABCD . Gọi MNPQ theo thứ tự là trung điểm của cạnh AB , BC , CD , DA đường thẳng AN cắt DM , BP theo thứ tự tại E và F . Đường thẳng CQ cắt BP , DM theo thứ tự G , H
A) chứng minh : tứ giác EFGH là hình bình hành
B ) chứng minh : các đường thẳng AC , BD , EG, FH đồng quy tại một điểm
Cho hình bình hành ABCD . Qua đỉnh A kẻ đường thẳng song song với đường chéo BD cắt các tia CB và CD lần lượt tại E và F. Chứng minh rằng các đường thẳng AC, DE và BF đồng quy.