Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD.
a) Tứ giác BEDF là hình gì? Hãy chứng mình điều đó ?
b) Chứng mình rằng: CH.CD = CB.CK
c) Chứng minh rằng: AB.AH + AD.AK = AC^2
1. Cho hình bình hành ABCD có AB= 2AD. Gọi M, N theo tứ tự là trung điểm của các cạnh AB, CD. Gọi P và Q lần lượt là giao điểm của BN với CM và của AN với DM
a. Tứ giác AMND là hình gì? Vì sao?
b. Chứng minh: tứ giác MPNQ là hình chữ nhật
c. Tìm điều kiện của tứ giác ABCD để MPNQ là hình vuông
d. Chứng minh: bốn đường thẳng AC, BD, MN, QP đồng qui
2. Cho hình bình hành ABCD. Kẻ AN, CM vuông góc với BD, N và M thuộc BD
a. Chứng minh DN = BM
b. Chứng minh Tứ giác ANCM là hình bình hành
c. Gọi K là điểm đối xứng với A qua N. Tứ giác DKCB là hình gì? Vì sao?
d. Tia AM cắt tia KC tại P. Chứng minh các đường thẳng AC, PN, KM đồng qui
Ai Giúp Ạ
Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a. Tứ giắc AECK là hình bình hành.
b. Ba điểm E, O, K thẳng hàng.
c. DN = NI = IB
d. AE = 3KI
Cho hình thang ABCD (AB//CD) có O là giao điểm hai đường chéo và AB=10cm; CD=18cm; AC=21cm.
a) Tính độ dài đoạn thẳng OA và OC
b) Chứng minh rằng OA.OD=OB.OC
c)Gọi M và N lần lượt là trung điểm AB và CD. Chứng minh ba điểm M; O; N thẳng hàng
giúp mình với ạ mình đang cần gấp
cho hình bình hành ABCD gọi I,K lần lượt là trung điểm CD và AB đường chéo BD cắt AI,CK lần lượt tại E,F
cmr DE=EF=FB
cho hình bình hành ABCD gọi I,K lần lượt là trung điểm CD và AB đường chéo BD cắt AI,CK lần lượt tại E,F
cmr DE=EF=FB
Bài 1: Tam giác ABC có AM, BN là các trung tuyến, G là trọng tâm. Gọi E và F lần
lượt là trung điểm của GB và GA. Gọi I là điểm đối xứng với G qua M.
a) Chứng minh BICG và MNFE là hình bình hành.
b) Để MNFE là hình chữ nhật thì cần có thêm điều kiện gì cho tam giác ABC ?
c) Khi BICG là hình thoi, hãy chứng minh tam giác ABC cân tại A.
Bài 2: Cho hình bình hành ABCD. Gọi E là điểm đối xứng của A qua trung điểm M
của BC.
a) Chứng minh ABEC là hình bình hành và D, E, C thẳng hàng.
b) Tam giác ABC phải có điều kiện gì thì ABEC trở thành hình thoi.
Cho hình bình hành ABCD, điểm P trên AB. Gọi M,N là các trung điểm của AD,BC;E,F lần lượt là điểm đối xứng của P qua M,N . Chứng minh rằng:
a) E,F thuộc đường thẳng CD
b) E,F=2CD
Cho tứ giác ABCD có E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA
a) Chứng minh tứ giác EFGH là hình bình hành
b) Hai đường chéo AC và BD của tứ giác ABCD có điều kiện gì thì:
* EFGH là hình thoi
* EFGH là hình chữ nhật
* EFGH là hình vuông