Cho hình bình hành ABCD.Gọi M, N lần lượt là trung điểm của BC, CD. Hai đường thẳng AM, AN cắt BD tại E, F. Chứng minh rằng:
A) E, F lần lượt là trọng tâm của các tam giác ABC và ACD
B)EB=EF=DF
(Gợi ý: Gọi O là giao điểm của 2 đường chéo)
Cho hình bình hành ABCD, gọi E và F lần lượt là trung điểm của BC và CD. Đường chéo BD cắt AE và AF lần lượt tại M và N. Chứng minh: a. M là trọng tâm của tam giác ABC, N là trọng tâm của tam giác ADC. b. MB=MN=ND
CHo hình bình hành ABCD Gọi M ,N lần lượt là trung điêm của BC , CD . AM và AN cắt đường chéo BD tại E và F
C/m BE = EF
1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.
2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.
3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN
4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.
5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3
Bai 1: Cho tam giác ABC , AM là đường trung tuyến , G là trọng tâm. Gọi D là điểm đối xững của G qua M. Chứng mính tứ giác BGCD là hình bình hành (ko cần hình đâu ạ)
Bài 2: Cho hình bình hành ABCD , gọi O là giao điểm của hai đường chéo AC và BD . Qua O vé hai đường thẳng, đường thứ I cắt cạnh AD và Bc lần lượt tại E và F. Đường thứu II lần lượt cắt Ad và Bc tại G và H. Chứng minh: EGFH là hình bình hành (ko cần vẽ hình đâu ạ)
Cho hình bình hành ABCD, Gọi M và N lần lượt là trung điểm của AB và CD. Các đường thẳng AN và CM cắt đường chéo BD tại E và F.
a) Chứng minh rằng DE = EF = FB
b) Từ điểm F kẻ đường thẳng // DC cắt AN tại P. Chứng minh tứ giác DPFN là hình bình hành.
Cho hình bình hành ABCD, Gọi M và N lần lượt là trung điểm của AB và CD. Các đường thẳng AN và CM cắt đường chéo BD tại E và F.
a) Chứng minh rằng DE = EF = FB
b) Từ điểm F kẻ đường thẳng // DC cắt AN tại P. Chứng minh tứ giác DPFN là hình bình hành.