https://hoccungvuvi.blogspot.com/2019/07/hinh-hoc-nang-cao-lop-8-danh-cho-hoc.html
https://hoccungvuvi.blogspot.com/2019/07/hinh-hoc-nang-cao-lop-8-danh-cho-hoc.html
Cho hình vuông ABCD có cạnh bằng a tâm O, hai điểm di động M,N lần lượt trên hai cạnh BC, CD sao cho góc MAN= 45 độ. Gọi H, K lần lượt là hình chiếu của B, D trên AM, AN
a). Chứng minh tg ABHO, ADKO nội tiếp khi BM= DN= \(\dfrac{a}{3}\)
b) Chứng minh \(\dfrac{AH}{AN}=\dfrac{AK}{AM}\)
Cho hình vuông ABCD. Gọi I là 1 điểm nằm giữa A và D. Tia DI cắt tia CD ở K. Kẻ Dx vuông góc DI cắt tia BC ở E
a) Chứng minh tam giác DIE là một tam giác cân
b) Tổng \(\dfrac{1}{DI^2}\)+\(\dfrac{1}{DK^2}\)không đổi khi I di động trên cạnh AB
Cho hình vuông ABCD cạnh a. Gọi M là một điểm nằm giữa B và C. Tia AM cắt đường thẳng CD tại N. Chứng minh giá trị biểu thức P=\(\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\) luôn không đổi khi M di chuyển trên B và C
cho hình vuông ABCD , cạnh có độ dài bằng a . E là 1 điểm di động trên CD(E khác C,D).AE cắt BC tại F ,kẻ đường thẳng vuông góc với AE tại A cắt CD tại K
a,Chứng minh:1/AF^2+1/AE^2=không đổi
b,chứng minh : cosAKE=sinEKF.cosEFK+sinEFK.cosEKF
Cho hình vuông ABCD có cạnh bằng a. Một góc 45 độ quay xung quanh đỉnh A và nằm bên trong hình vuông cắt cạnh BC,CD lần lượt tại M và N.
1) C/m MN luôn tiếp xúc với một đường tròn cố định.
2) C/m a2- BM.DN=a(BM+DN)
cho đường tròn (O;R) và dây cung BC cố định (BC<2R) . Gọi A là điểm di động trên cung lớn BC sao cho ABC là tam giác có 3 góc nhọn. Các đường cao AD,BE,CF của tam giác cắt nhau tại H . a) CM:tứ giác AEHF nội tiếp đường tròn; xác định tâm I của đường tròn đó.b)CMR:khi điểm A di động thì tiếp tuyến tại E của đường tròn tâm (I) luôn đi qua 1 điểm cố định.c)Xác định vị trí của điểm A để tam giác AEF có diện tích lớn nhất ?
Cho ΔABC đều cạnh a. Điểm Q di động trên AC và điểm P di động trên tia đối của tia CB sao cho AQ.BP = \(a^2\). Đường thẳng AP cắt BQ tại M. Cm: MA + MC = MB.
Cho (O;R) và 1 đường thẳng d cố định cắt (O) tại 2 điểm C, D. Một điểm M di động trên d sao cho MC>MD và ở ngoài (O). Qua M kẻ tiếp tuyến MA,MB với đường tròn. Gọi H là trung điểm của CD, gọi giao của AB với MO, CH lần lượt là E và F. Chứng minh:
a) \(CE.OM=R^2\)
b) Tứ giác MEHF nội tiếp
c) Đường thẳng AB đi qua 1 điểm cố định