Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hình bình hành ABCD .Gọi E là trung điểm của AB, F là trung điểm của CD. Chứng minh hai tam giác ADE và CBF đồng dạng với nhau.

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Cao Minh Tâm
22 tháng 3 2017 lúc 2:06

Vì ABCD là hình bình hành nên:

AB = CD (1)

Theo giả thiết:

AE = EB = 1/2 AB (2)

DF = FC = 1/2 CD (3)

Từ (1), (2) và (3) suy ra:

EB = DF và BE // DF.

Suy ra tứ giác BEDF là hình bình hành (vì có cặp cạnh đối song song và bằng nhau)

Suy ra: DE // BF

Ta có:  ∠ (AED) = ∠ (ABF ) (đồng vị)

∠ (ABF) =  ∠ (BFC) (so le trong)

Suy ra:  ∠ (AED) =  ∠ ( BFC)

Xét  △ AED'và  △ CFB ta có:

∠ (AED) = ∠ ( BFC) (chứng minh trên)

∠ A =  ∠ C (tính chất hình bình hành)

Vậy: △ AED đồng dạng  △ CFB (g.g)


Các câu hỏi tương tự
trương văn trung
Xem chi tiết
Karry Nhi
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Hằng Hoàng
Xem chi tiết
Phạm Thị Chi Mai
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Hà Thương
Xem chi tiết
14_Tô Huỳnh Quôc Huy_8a4
Xem chi tiết
Mai Chu Sơn
Xem chi tiết