a: Xét tứ giác BEDF có
O là trung điểm của FE
O là trung điểm của BD
Do đó: BEDF là hình bình hành
a: Xét tứ giác BEDF có
O là trung điểm của FE
O là trung điểm của BD
Do đó: BEDF là hình bình hành
Cho hình bình hành ABCD có O là giao điểm 2 đường chéo. Trên đường chéo AC lấy 2 điểm E, F sao cho AE = EF = FC.
a/ CMR : BEDF là hình bình hành
b/ DE cắt BC tại N. CM : DF = 2FN
c/ BF cắt DC tại I và BE cắt AB tại J. CMR : I, O, J thẳng hàng
Cho hình bình hành ABCD. Trên đường chéo AC lấy các điểm E,F sao cho AE=EF=FC
a)Chứng minh tứ giác BEDF là hình bình hành
b)DF cắt BC tại M. Chứng minh DF=2FM
c)BF cắt DC tại I và DE cắt AB tại J
Chứng minh I,O,J thẳng hàng
Cho hình bình hành ABCD. Trên đường chéo AC lấy 2 điểm E, F sao cho AE = EF = FC. Gọi O là giao điểm của AC và BD. DF cắt BC tại M.
a) Chứng minh tứ giác BEDF là hình bình hành.
b) Chứng minh DF = 2FM.
c) BF cắt DC tại I, DE cắt AB tại K. Chứng minh tứ giác BIDK là hình bình hành
Cho hình bình hành ABCD có O là giao điểm hai đường chéo. Trên đường chéo AC lấy hai điểm E và F sao cho AE=EF=FC
a, Tứ giác BEDF là hình gì?chứng minh
b, DF cắt BC tại M. Cm DF =2FM
c,BF cắt DC tai I và DE cắt AB tại K. Cm 3 điểm I,O,K thẳng hàng
cho hình bình hành ABCD,gọi O là giao điểm của 2 đường chéo,trên đường chéo AC lấy 2 điểm E ,F sao cho AE=EF=FC
a,Chứng minh rằng:Tứ giác BEDF là hình bình hành
b,DF cắt BC tại M
cmr;DF=2FM
c,BF cắt DC tại I .DE cắt AB tại K
cmr:I,O,K thẳng hàng
CHO HÌNH BÌNH HÀNH ABCD ,GỌI O LÀ GIAO ĐIỂM CỦA HAI ĐƯỜNG CHÉO ,TRÊN ĐƯỜNG CHÉO AC LẤY 2 ĐIỂM E,F SAO CHO AE=EF=FC
A,CM:TỨ GIÁC BEDF LÀ HÌNH BÌNH HÀNH
B, DF CẮT BC TẠI M.CMR:DF=2FM
C,BF CẮT DC TẠI I. DE CẮT AB TẠI K
CMR:I,O,K THẲNG HÀNG
cho hình bình hành ABCD. Trên đường chéo AC lấy hai điểm E, F sao cho AF= EF= FC
a) C/m : BEDF là hình bình hành
b) DF cắt BC tại M. C/m : DF= 2FM
c) BF cắt DC tại I, DE cắt AB tại I. C/m : O, I, J thẳng hàng ( O là giao điểm của hai đường chéo )
1,cho hình bình hành ABCD có o là giao của hai đường chéo trên đường chéo ac lấy AE=AF=FC
a,BEDF là hình bình hành
b,DF cắt BC tại M Chứng minh DF =2FM
c,BF cắt DC tại I và DE cắt AB tại J CMR 3 điểm IOJ thẳng hàng
2,Cho hình bình hành ABCD Có A=120 Tia phân giác góc D qua trung điểm I Của AB Kẻ AH vuông góc CD
CMR a,AI=2BH
b,DI=2AH
c,AC vuông góc AD
Cho hình bình hành ABCD. Trên đường chéo AC lấy hai điểm E và F sao cho AE = EF = FC.
a) Tứ giác BEDF là hình gì? Vì sao?
b) Tia DF cắt BC tại M. Chứng minh: DF = 2FM.
c) Tia BE cắt AD tại N, hai đường chéo AC và BD cắt nhau tại O. Chứng minh: M đối xứng với N qua điểm O.