cho\(\hept{\begin{cases}a,b>0\\a^2+2ab+2b=5\end{cases}}\)tìm giá trị lớn nhất của\(P=\frac{a^3+b^3}{ab}\)
\(\hept{\begin{cases}a,b,c>0\\abc=1\end{cases}.CMR:}1+\frac{3}{a+b+c}\ge\frac{6}{ab+bc+ca}\)
Cho a , b , c thỏa \(\hept{\begin{cases}a+b+c=4\\ab+bc+ca=5\end{cases}}\) , Chứng minh \(\frac{2}{3}\le a,b,c\le2\) .
Cho \(\hept{\begin{cases}a,b,c>0\\a+b+c=0\end{cases}}\).Tìm giá trị nhỏ nhất của bthức \(P=\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)\)
Cho \(\hept{\begin{cases}a,b,c>0\\a+b+c=1\end{cases}}\)
Tìm giá trị nhỏ nhất của S= \(\frac{a^2+b}{b+c}+\frac{b^2+c}{c+a}+\frac{c^2+a}{a+b}\)
E lâu lâu e mới tìm được bài dễ, mời mọi người xơi
Cho \(\hept{\begin{cases}a,b,c>0\\a+b+c=3\end{cases}}\):. Tìm giá trị lớn nhất của:
\(P=\frac{bc}{\sqrt[4]{a^2+3}}+\frac{ca}{\sqrt[4]{b^2+3}}+\frac{ab}{\sqrt[4]{c^2+3}}\)
Cho \(\hept{\begin{cases}ab+bc+ca\le abc\\a,b,c>0\end{cases}}\)
Tìm Min \(A=\frac{a^2}{b+2a}+\frac{b^2}{c+2b}+\frac{c^2}{a+2c}\)
Bài 1: \(\hept{\begin{cases}a,b,c>0\\ab+bc+ca=5abc\end{cases}CMR:P=\frac{1}{2a+2b+c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\le}1\)
Bài 2:\(\hept{\begin{cases}a,b,c>0\\a+b+c=9\end{cases}}\)Tìm GTNN \(P=\frac{1}{\sqrt[3]{a+2b}}+\frac{1}{\sqrt[3]{b+2c}}+\frac{1}{\sqrt[3]{c+2a}}\)
cho \(\hept{\begin{cases}a,b>\frac{\sqrt{5}-1}{2}\\a+b=ab\end{cases}}\)chung minh rang:
\(\frac{1}{a^2+a-1}+\frac{1}{b^2+b-1}\ge\frac{2}{5}\)