Bài 1: Cho hệ phương trình \(\left\{{}\begin{matrix}mx+y=3m-1\\x+my=m+1\end{matrix}\right.\) (m là tham số). Tìm các giá trị tham số m để hệ phương trình:
a) Có nghiệm duy nhất
b) Vô nghiệm
c) Vô số nghiệm
Bài 2: Cho hệ phương trình \(\left\{{}\begin{matrix}x-\left(m+1\right)y=1\\4x-y=-2\end{matrix}\right.\) (m là tham số). Tìm các giá trị m nguyên để hệ phương trình có nghiệm duy nhất (x, y) sao cho x và y nguyên.
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(2m+1\right)x+y=2m-2\\m^2x-y=m^2-3m\end{matrix}\right.\)
Trong đó \(m\in Z,m\ne-1\). Xác định m để hệ phương trình có nghiệm nguyên
tìm m ∈ Z để hệ có nghiệm duy nhất là nghiệm duy nhất là nguyên
a)\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\m^2x-y=m^2+2m\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}mx-y=1\\x+4\left(m+1\right)y=4m\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}mx+y-3=3\\x+my-2m+1=0\end{matrix}\right.\)
1. Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\)
a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó
b) tìm a để hệ phương trình vô nghiệm
2. cho hệ phương trình \(\left\{{}\begin{matrix}ax-2y=a\\-2x+y=a+1\end{matrix}\right.\)
a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a
b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1
c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên
Tìm m nguyên để hệ phương trình sau có nghiệm duy nhất là nghiệm nguyên
a)\(\left\{{}\begin{matrix}mx+2y=m+1\\2x+my=2m-1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\m^2x-y=m^2+2m\end{matrix}\right.\)
Cho hệ phương trình: \(\left\{{}\begin{matrix}x+2y=5\left(1\right)\\mx+y=4\left(2\right)\end{matrix}\right.\)
a) Tìm m để hệ phương trình có nghiệm duy nhất mà x và y trái dấu.
b) Tìm m để hệ phương trình có nghiệm duy nhất mà \(x=\left|y\right|\)
1. giải hệ phương trình \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\\\dfrac{2}{xy}-\dfrac{1}{z^2}=4\end{matrix}\right.\)
2. cho hpt \(\left\{{}\begin{matrix}2x+3y=3a\\ax-y=2\end{matrix}\right.\) (a là tham số) tìm nghiệm duy nhất của hpt thỏa mãn \(2x+y^2=1\)
3. cho hpt \(\left\{{}\begin{matrix}2x+y=m\\3x-2y=5\end{matrix}\right.\) tìm nghiệm duy nhất của hpt thỏa mãn x<0; y<0
4. cho hpt \(\left\{{}\begin{matrix}y-16x=m\\m^2-y=-4\end{matrix}\right.\) tìm m để hpt có nghiệm nguyên