cho hcn ABCD tâm (O). kẻ DH⊥AC, HI⊥AD, HK⊥DC. M là giao điểm của IK và DB. hỏi đường tròn đường kính DK đi qua điểm nào.
giúp mk vs ạ mk cần gấp
Cho đường tròn tâm O, bán kính R. Từ một điểm A nằm ngoài đường tròn, kẻ tiếp tuyến AB, AC. Gọi M là điểm nằm trên cung nhỏ BC
( M không thuộc OA). Từ M kẻ MH, MI, MK lần lượt vuông góc BC, AB,AC tại H, I, K. Chứng minh:
a) BIMH, CHMK nội tiếp
b) MH2 = MI. MK
c) E là giao điểm của BM và HI, F là giao điểm của CM và HK. Chứng minh: HEMF nội tiếp
giúp mk vs!!
1.Từ 1 điểm A nằm ngoài đường tròn tâm O, vẽ 2 tiếp tuyến AB,AC của đường tròn tâm O( B,C là các tiếp điểm), BD là đường kính của đường tròn tâm O, AD cắt đường tròn tâm O tại E.
a)CM: AB2=AD.AE.
b)Gọi H là giao điểm của OA với BC. CMR: HC là phân giác của góc EHD.
2.Cho hình thang ABCD, trên cạnh BC lấy E sao cho BE=BC/3, trên tia đối của tia CD lấy lấy F sao cho CF=BC/2. Gọi M là giao điểm của AE và BF.
CMR: 5 điểm A,B,C,D,M cùng thuộc1 đường tròn.
3.Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn tâm O, AD là đường kính của (O), tiếp tuyến tại D của (O) cắt BC tại M. Đường thẳng MB cắt AB,AC lần lượt tại E và F.
a) CMR: MD^2=MC.MB
b) Gọi H là trung điểm của BC, CMR: MDHO là tứ giác nội tiếp.
Trên nửa đường tròn tâm O đường kính AD lấy điểm C và B sao cho \(\stackrel\frown{AC}>\stackrel\frown{CD}\),\(\stackrel\frown{AB}=\stackrel\frown{BC}\) Gọi E là giao điểm của AB và DC,H là giao điểm của AC và BD, K là giao điểm của EH và AD,Tia HC cắt (D;DE) tại F,KC cắt EF tại M( Đã có tam giác ADE cân tại D, KHCD là tứ giác nội tiếp,KC//AE).CM: MB là tiếp tuyến của đường tròn đường kính AD
Cần gấp !!!!!!
Cho ∆ABC vuông ở A. Đg cao ANH (AB<AC). Vẽ đường tròn tâm B, bán kính AB cắt ANH tại D (D khác A )
a) c/m: H là trung điểm của AD và ∆CAD cân.
b) c/m: CD là tiếp tuyến của đg tròn tâm B, bán kính AB.
c) Vẽ đg kính AK của (B; AB). Từ K vẽ đường thẳng vg góc vs ACH cắt AD tại N. C/m: DN×DC= DB×DK; ∆KDC và ∆NBD đồng dạng.
Mk đã c/m đc câu a) và b). Mong mn giúp mk câu c). Cảm ơn a
Cho đường tròn (O; R) có đường kính AB. Vẽ tiếp tuyến Ax, By của đường tròn(O) lấy một điểm C sao cho AC< BC. Tiếp tuyến tại C của đường tròn (O) cắt Ax, By lần lượt tại E, F
a) Chứng minh EF= AE+ BF
b)BC cắt Ax tại D. Chứng minh AD2 = DC. DB
c) Gọi I là giao điểm của OD và AC, OE cắt AC tại H, tia DH cắt AB tại K. Chứng minh IK//AD
d) IK cắt EO tại M. Chứng minh: A,M,F thẳng hàng
Cho đường tròn (O; R) và BC là đường kính. Trên tia đối của tia BC lấy điểm A. Qua A vẽ hai tiếp tuyến AD, AE với đường tròn (O; R), (D, E là các tiếp điểm). Kẻ DH vuông góc với EC tại H. DE, DH cắt AC thứ tự tại I và K. a) Chứng minh bốn điểm A, D, O, E cùng thuộc một đường tròn. Xác định tâm và bán kính của đường tròn đó. b) Cho AO = 3R. Tính AE và OI theo R. c) Chứng minh rằng: 2IE2 = DK.DH. d) Qua I kẻ đường thẳng song song với EC cắt DH tại M. Kéo dài CM cắt đường tròn (O; R) tại điểm thứ hai là N. Chứng minh đường thẳng DN đi qua trung điểm của AI.
EM CẦN GẤP Ạ....
Cho tam giác ABC vuông tại A,đường cao AD.Gọi M là trung điểm của AB.Chứng minh
a) Đường tròn tâm O đường kính AC đi qua D
b)MD là tiếp tuyến của đường tròn tâm O
EM CẦN GẤP Ạ....
Cho tam giác ABC vuông tại A,đường cao AD.Gọi M là trung điểm của AB.Chứng minh
a) Đường tròn tâm O đường kính AC đi qua D
b)MD là tiếp tuyến của đường tròn tâm O