Cho hàm số y=3x^2 +x^3 có đồ thị (C) và điểm A(a;0) sao cho từ Avẽ đc 3 tiếp tuyến đến đồ thị (C) trong đó có 2 tiếp tuến vuông góc với nhau...
Cho hàm số y = ax3 + bx2 + cx + d (a khác 0) , có đồ thị (C). Tìm tập hợp tất cả các giá trị thực của tham số a để tiếp tuyến của (C) tại điểm x0 = -b/3a có hệ số góc nhỏ nhất.
Giúp mình cách làm với ạ 😍
a) tìm hệ số góc của tiếp tuyến của đồ thị hàm số y=-x^3+3x-2 (c) tại điểm có hoành độ -3
b) viết phương trình tiếp tuyến của đồ thị hàm số (c) trên tại điểm ( ứng với tiếp điểm ) có hoành độ -3
cho hàm số \(\dfrac{-x+2}{x-1}\) có đồ thị (C) và điểm A(a;1) . Gọi S là tập hợp tất cả các giá trị thực củ tham số a để có đúng 1 tiếp tuyến của (C) đi qua A. Tổng tất cả các giá trị của S là
Cho hàm số y=\(x^3-3x^2-1\)có đồ thị (C).Điểm M(a;b) trên(C) có hoành độ thuộc [2;3] sao cho tiếp tuyến của (C) tại M có hệ số góc lớn nhất.Khi đó, S=a+b=?
Cho hàm số y = x3 + 3mx2 + (m + 1)x + 1 (1), m là tham số thực. Tìm các giá trị của m để tiếp tuyến của đồ thị của hàm số (1) tại điểm có hoành độ x = -1 đi qua điểm A(1; 2).
A: 1
B: -1
C: 3/4
D: 5/8
Cho hàm số y = f(x) có đồ thị (C), biết tiếp tuyến của đồ thị (C ) tại điểm có hoành độ x = 0 là đường thẳng y = 3x-3. Giá trị của lim x → 0 3 x f ( 3 x ) - 5 f ( 4 x ) + 4 f ( 7 x ) bằng ?
A. 1 10
B. 3 31
C. 3 25
D. 1 11
Cho hàm số y = -x3 – 3x2 + 9x – 5 (C). Trong tất cả các tiếp tuyến của đồ thị (C), hãy tìm tiếp tuyến có hệ số góc lớn nhất.
A: y = 8x - 3
B: y = 6x - 4
C: y = 10x - 2
D: y = 12x - 4
Cho hàm số y = x3 + 3x2 – 9x + 5 (C). Trong tất cả các tiếp tuyến của đồ thị (C), hãy tìm tiếp tuyến có hệ số góc nhỏ nhất.
A: y = -2x + 4
B: x + y + 12 = 0
C: 12x + y – 4 = 0
D: x - 12y + 4 = 0