Hệ phương trình 2 x + y 2 − 5 4 x 2 − y 2 + 6 4 x 2 − 4 x y + y 2 = 0 2 x + y + 1 2 x − y = 3 nghiệm x 0 ; y 0 thỏa mãn x 0 > 1 2 . Khi đó P = x 0 + y 0 2 có giá trị là:
A. 1
B. 7 16
C. 3
D. 1 hoặc 7 16
Cho đường tròn (C) có phương trình x − a 2 + y − b 2 = R 2 và điểm M ( x 0 ; y 0 ) nằm bên trong đường tròn. Đường thẳng ∆ qua M cắt đường tròn tại hai điểm A, B sao cho M là trung điểm của AB. Phương trình của ∆ là:
A. ( a - x 0 ) ( x - x 0 ) + ( b - y 0 ) ( y - y 0 ) = 0
B. a + x 0 x − x 0 + b + y 0 y − y 0 = 0
C. ( a - x 0 ) ( x + x 0 ) + ( b - y 0 ) ( y + y 0 ) = 0
D. a + x 0 x + x 0 + b + y 0 y + y 0 = 0
Biết rằng hàm số y = a x 2 + bx + c (a ≠ 0) đạt giá trị nhỏ nhất bằng 4 tại x = 2 và có đồ thị hàm số đi qua điểm A (0; 6). Tính tích P = abc.
A. P = -6
B. P = 6
C. P = -3
D. P = 32
cho hàm số y = ax + b đồng biến và đồ thị là đường thẳng đi qua điểm M( 3,4) cắt hai trục toạ độ 0x, 0y lần lượt tại A và B sao cho 0B = 4 0A. tính diện tích tam giác 0AB
Phương trình của đường thẳng qua điểm M(x0;y0 ) có vectơ pháp tuyến n → = a ; b là:
A. x − x 0 a = y − y 0 b
B. b x − x 0 − a y − y 0 = 0
C. a x + x 0 + b y + y 0 = 0
D. a x - x 0 + b y - y 0 = 0
Cho hàm số y = 2(m−1)x – m 2 – 3 (d). Tìm tất cả các giá trị của m để (d) cắt trục hoành tại một điểm có hoành độ x 0 thỏa mãn x 0 < 2.
A. m < -1
B. m > 2
C. m > 1
D. m < 1
Cho phương trình của (P): y = a x 2 + bx + c (a ≠ 0) biết rằng hàm số có giá trị lớn nhất bằng 1 và đồ thị hàm số đi qua các điểm A (2; 0), B (−2; −8). Tình tổng a 2 + b 2 + c 2
A. a 2 + b 2 + c 2 = 3
B. a 2 + b 2 + c 2 = 29 16
C. a 2 + b 2 + c 2 = 48 29
D. a 2 + b 2 + c 2 = 5 a 2 + b 2 + c 2 = 209 16
Cho hai điểm A(1; 2) và B( 4; 6).Hỏi có mấy điểm M trên trục tung sao cho diện tích tam giác MAB bằng 1 ?
A. 0
B. 1
C. 2
D. 3
cho hàm số y=x2 - mx - m - 1 (m ϵ R) . Gọi S là tập hợp tất cả các giá trị của m để đồ thị đã cho cắt trục hoành tại 2 điểm phân biệt có hoành độ x1 ; x2 thỏa mãn |x1|+|x2|=4 . Tổng tất cả các phần tử của S là bao nhiêu