Cho hàm số f(x) liên tục trên R và có đồ thị như hình vẽ bên.
Số giá trị nguyên của tham số m để phương trình f x + m = m có đúng 6 nghiệm thực phân biệt là
A. 1.
B. 3.
C. 2.
D. 4
Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ bên.
Có bao nhiêu giá trị nguyên của tham số m để phương trình f x 2 − 2 x = m có đúng 4 nghiệm thực phân biệt thuộc đoạn − 3 2 ; 7 2 ?
A. 3
B. 1
C. 4
D. 2
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị thực của tham số m để phương trình f(cosx)=10 có 2 nghiệm phân biệt thuộc ( 0 ; 3 π 2 ] là
A. [-2;2]
B. (0;2)
C. (-2;2)
D. [0;2)
Cho hàm số y = f(x) liên tục trên R có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên của m để phương trình |f(x−2)+1| − m = 0 có 8 nghiệm phân biệt.
A. 0
B. 2.
C. 1.
D. 2.
Cho hàm số f(x) liên tục trên R và có đồ thị như hình vẽ bên. Số giá trị nguyên của tham số m để phương trình f 2 cos x + m - 2018 f cos x + m - 201 = 0 có đúng 6 nghiệm phân biệt thuộc đoạn 0 ; 2 π là
A. 1
B. 2
C. 3
D. 5
Cho hàm số y = f(x) liên tục trên R, có đồ thị như hình vẽ. Các giá trị của tham số m để phương trình 4 m 3 + m 2 f 2 ( x ) + 5 = f 2 ( x ) + 3 có ba nghiệm phân biệt là
A. m = ± 37 2
B. m = 3 2
C. m = - 37 2
D. m = 37 2
Cho hàm số f(x) liên tục trên R và có đồ thị như hình vẽ bên. Có bao nhiêu số nguyên m để phương trình f(f(x+1))=m có ít nhất 6 nghiệm thực phân biệt ?
A. 2.
B. 3.
C. 5.
D. 4.
Cho hàm số y=f(x) liên tục trên tập ℝ và có đồ thị (C) như hình vẽ. Có bao nhiêu giá trị nguyên dương của tham số m để phương trình f 2 x - m - 1 f x + m - 2 = 0 có 12 nghiệm phân biệt?
A. Không tồn tại m
B. 1
C. 2
D. 3
Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình dưới. Biết rằng trục hoành là tiệm cận ngang của đồ thị. Tìm tất cả các giá trị thực của tham số m để phương trình f x = 4 m + 2 log 4 2 có hai nghiệm phân biệt dương.
A. m > 1
B. 0 < m < 1
C. m < 0
D. 0 < m < 2