Cho hàm số f(x) liên tục trên R và có đồ thị như hình vẽ bên. Có bao nhiêu số nguyên m để phương trình f(sinx)=m có đúng hai nghiệm thực phân biệt thuộc đoạn [0;π].
A. 5
B. 4
C. 3
D. 2
Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ bên.
Có bao nhiêu giá trị nguyên của tham số m để phương trình f x 2 − 2 x = m có đúng 4 nghiệm thực phân biệt thuộc đoạn − 3 2 ; 7 2 ?
A. 3
B. 1
C. 4
D. 2
Cho hàm số y=f(x) liên tục trên R có đồ thị như hình vẽ bên. Có bao nhiêu số nguyên m để phương trình f(f(x)-m)=0 có tất cả 9 nghiệm thực phân biệt.
A. 1.
B. 0.
C. 3.
D. 2.
Cho hai hàm số y=f(x) và y=g(x) là các hàm xác định và liên tục trên R và có đồ thị như hình vẽ bên (trong đó đường cong đậm hơn là của đồ thị hàm số y=f(x). Có bao nhiêu số nguyên m để phương trình f(1-g(2x-1))=m có nghiệm thuộc đoạn - 1 ; 5 2
A. 8
B. 3
C. 6
D. 4
Cho hàm số f(x) liên tục trên R và có đồ thị như hình vẽ bên. Có bao nhiêu số nguyên m để phương trình f(f(x+1))=m có ít nhất 6 nghiệm thực phân biệt ?
A. 2.
B. 3.
C. 5.
D. 4.
Cho hàm số y = f(x) liên tục trên R có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên của m để phương trình |f(x−2)+1| − m = 0 có 8 nghiệm phân biệt.
A. 0
B. 2.
C. 1.
D. 2.
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình bên. Có bao nhiêu số thực m để bất phương trình m x + m 2 10 - x + 3 m + 1 . f ( x ) ≥ 0 nghiệm đúng với mọi x ∈ - 2 ; 3
A. 1
B. 3
C. 0
D. 2
Cho hàm số y = f(x) liên tục và có đạo hàm trên R, có đồ thị như hình vẽ. Với m là tham số bất kỳ thuộc [0;1]. Phương trình f x 3 - 3 x 2 = 3 m + 4 1 - m có bao nhiêu nghiệm thực?
A. 2
B. 3
C. 5
D. 9
Cho hàm số y = f(x) liên tục trên đoạn [-3;10], biết f − 3 = f 3 = f 8 và có bảng biến thiên như hình sau
Có bao nhiêu giá trị nguyên của m để phương trình f(x)=f(m) có ba nghiệm thực phân biệt thuộc đoạn [-3;10]?
A. 1.
B. 2.
C. 8.
D. 9.