Cho hàm số y = f(x) liên tục trên R và có đồ thị (C) là đường cong như hình bên. Diện tích hình phẳng giới hạn bởi đồ thị (C) trục hoành và hai đường thẳng x = 0 , x = 2 (phần tô đen) là
A. S = ∫ 0 1 f x d x - ∫ 1 2 f x d x
B. S = ∫ 0 2 f x d x
C. S = ∫ 0 1 f x d x + ∫ 1 2 f x d x
D. S = ∫ 0 2 f x d x
Cho hàm số y = f ( x ) liên tục trên đoạn [a;b] có đồ thị như hình bên và c ∈ a ; b . Gọi S là diện tích của hình phẳng (H) giới hạn bởi đồ thị hàm số y = f ( x ) và các đường thẳng y = 0 , x = a , x = b . . Mệnh đề nào sau đây sai?
A. S = ∫ a c f x d x + ∫ c b f x d x
B. S = ∫ a c f x d x − ∫ c b f x d x
C. S = ∫ a b f x d x
D. S = ∫ a c f x d x + ∫ b c f x d x
Cho hàm số y = f(x) liên tục trên đoạn [a;b] và cắt trục hoành tại điểm x = c (a<c<b) (như hình vẽ bên). Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) trục hoành và hai đường thẳng x = a; x = b. Mệnh đề nào dưới đây đúng ?
A. S = ∫ a c f ( x ) d x - ∫ c b f ( x ) d x
B. S = - ∫ a c f ( x ) d x + ∫ c b f ( x ) d x
C. S = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x
D. S = ∫ a b f ( x ) d x
Cho hàm số y=f(x) liên tục trên đoạn a ; b và f(x)>0 ∀ x ∈ a ; b Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y=f(x), trục hoành và 2 đường thẳng x=a, x=b (a<b). Thể tích của vật thể tròn xoay khi quay D quanh Ox được tính theo công thức
A. ∫ a b f ( x 2 ) d x
B. π ∫ a b f ( x 2 ) d x
C. π ∫ a b [ f ( x ) ] 2 d x
D. ∫ a b [ f ( x ) ] 2 d x
Kí hiệu S là diện tích hình thang cong giới hạn bởi đồ thị hàm số y = f(x) liên tục, trục hoành và hai đường thẳng x = a, x = b như trong hình vẽ bên. Khẳng định nào sau đây là sai?
A. S = ∫ a b f x dx
B. S = ∫ a b − f x dx
C. S = ∫ a b f x dx
D. S = ∫ a b f x dx
Cho hàm số f(x) xác định và liên tục trên đoạn [-5;3] có đồ thị như hình vẽ bên. Biết diện tích các hình phẳng (A), (B), (C), (D) giới hạn bởi đồ thị hàm số f(x) và trục hoành lần lượt bẳng 6; 3; 12; 2. Tích phân ∫ - 3 1 2 f 2 x + 1 + 1 d x bằng
A. 27
B. 25
C. 17
D. 21
Hình phẳng được giới hạn bởi đồ thị hàm số y = f(x) liên tục trên đoạn [a;b] trục hoành và hai đường thẳng x = a , x = b a ≤ b có diện tích S là:
A. S = ∫ a b f x d x .
B. S = ∫ a b f x d x .
C. S = ∫ a b f x d x .
D. S = π ∫ a b f 2 x d x .
Hình phẳng được giới hạn bởi đồ thị hàm số y= f(x) liên tục trên đoạn [a;b] trục hoành và hai đường thẳng x = a, x = b a ≤ b có diện tích S là
A. S = ∫ a b f x d x
B. S = - ∫ a b f x d x
C. S = ∫ a b f x d x
D. S = π ∫ a b f 2 x dx
Cho hàm số f(x) xác định và liên tục trên đoạn [-5;3] có đồ thị như hình vẽ bên. Biết diện tích các hình phẳng (A),(B),(C),(D) giới hạn bởi đồ thị hàm số f (x) và trục hoành lượt bằng 6;3;12;2. Tích phân ∫ - 3 1 ( 2 f ( 2 x + 1 ) + 1 ) d x bằng
A. 27.
B. 25.
C. 17.
D. 21.