Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f' (x) như hình vẽ bên. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
1. Hàm số g(x) có 3 điểm cực trị.
2. Hàm số g(x)đạt cực tiểu tại x = 0.
3. Hàm số g(x)đạt cực đại tại x = 2.
4. Hàm số g(x)đồng biến trên khoảng (-2;0).
5. Hàm số g(x)nghịch biến trên khoảng (-1;1).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 1.
B. 4.
C. 3.
D. 2.
Cho hàm số y=f(x) có đạo hàm trên R. Đồ thị hàm số y=f’(x) như hình vẽ bên dưới. Hỏi đồ thị hàm số g(x)=-x-f(x) đạt cực đại tại?
A. x = -1
B. x = 0
C. x = 1
D. x = 2
Cho hàm số y = f(x) có đạo hàm trên R và có đồ thị hàm số y = f'(x) như hình vẽ.
Hàm số g ( x ) = 2 f ( x ) + x 2 đạt cực đại tại điểm?
A. x = -1
B. x = 0
C. x = 1
D. x = 2
Cho hàm số y = f(x) liên tục trên R. Biết đồ thị hàm số y = f’(x) được cho bởi hình vẽ bên, xét hàm số y = g x = f x - x 2 2 . Hỏi trong các mệnh đề sau có bao nhiêu mệnh đề đúng?
(I) Số điểm cực tiểu của hàm số g(x) là 2.
(II) Hàm số g(x) đồng biến trên khoảng (-1;2).
(III) Giá trị nhỏ nhất của hàm số là g(-1).
(IV) Cực đại của hàm số g(x) là 0.
A. 0
B. 1
C. 2
D. 3
Cho hàm số y = f(x) có đồ thị của hàm số y = f '(x) được cho như hình bên và các mệnh đề sau:
(1). Hàm số y = f(x) đồng biến trên khoảng (-1;0)
(2). Hàm số y = f(x) nghịch biến trên khoảng (1;2)
(3). Hàm số y = f(x) đồng biến trên khoảng (3;5)
(4). Hàm số y = f(x) có hai điểm cực đại và một điểm cực tiểu.
Số mệnh đề đúng là
A. 1
B. 3
C. 4
D. 2
Cho hàm số y=f(x) có đạo hàm trên R. Hàm số y=f '(x) có đồ thị như hình vẽ bên. Đặt y = g ( x ) = f ( x ) - x 3 3 + x 2 - x + 1 . Khẳng định nào sau đây là đúng?
A. g(1)>g(0)>g(2)
B. g(1)>g(2)>g(0)
C. g(2)>g(0)>g(1)
D. g(0)>g(2)>g(1)
Cho hàm số y=f(x) có đạo hàm trên R. Hàm số y=f '(x) có đồ thị như hình vẽ bên. Đặt y = g ( x ) = f ( x ) - x 2 2 . Khẳng định nào sau đây là đúng?
A. Hàm số đồng biến trên khoảng (1;2)
B. Đồ thị hàm số y=g(x) có 3 điểm cực trị
C. Hàm số y=g(x) đạt cực tiểu tại x=-1
D. Hàm số y=g(x) đạt cực đại tại x=1
Cho hàm số y=f(x) có đạo hàm trên R. Đồ thị hàm số y=f '(x) như hình vẽ bên dưới. Hỏi đồ thị hàm số g(x)=f(x)-x có bao nhiêu điểm cực trị?
A. 1
B. 2
C. 3
D. 4
Cho hàm số y = f(x) xác định trên R. Đồ thị hàm số y = f’(x) như hình vẽ bên. Đặt g ( x ) = f ( x ) - 1 3 x 3 - 3 4 x 2 + 3 2 x + 2018 . Điểm cực tiểu của hàm số g(x) đoạn [–3;1] là:
A. x C T = - 1
B. x C T = 1 2
C. x C T = - 2
D. x C T = 0