Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d (a,b,cÎR, a≠0) có đồ thị (C). Biết đồ thị (C) đi qua A(1;4) và đồ thị hàm số y = f ’ ( x ) cho bởi hình vẽ. Giá trị f ( 3 ) - 2 f ( 1 ) là
A. 30
B. 24
C. 26
D. 27
Cho hàm số y=f(x) có đạo hàm liên tục trên (1;+∞) và thỏa mãn x f ' ( x ) - 2 f ( x ) . l n x = x 3 - f ( x ) ,∀x∈(1;+∞); biết f ( e 3 ) = 3 e . Giá trị f(2) thuộc khoảng nào dưới đây
A. ( 12 ; 25 / 2 )
B. ( 13 ; 27 / 2 )
C. ( 23 / 2 ; 12 )
D. ( 14 ; 29 / 2 )
Cho hàm số f ( x ) = x 2 - 3 k h i x ≥ 2 x + 1 k h i x < 2 thì giá trị của lim x → 2 f ( x ) là:
A. 1
B. 3
C. -1
D. Không tồn tại
Cho biết y=f(x) là hàm số liên tục và xác định trên R|{1;3} và thỏa mãn đồng thời các điều kiện: f ' ( x ) = 1 ( x - 1 ) ( x - 3 ) ; f ( 0 ) = 2 f ( 2 ) = 4 f ( 4 ) = 4 Khi đó giá trị của biểu thức: f ( - 1 ) + f 3 2 + f 9 2 nằm trong khoảng?
A . 5 - 1 2 ln 7 18
B . 7 - 1 2 ln 7 18
C . 2 + 1 2 ln 7 18
D . 3 + 1 2 ln 7 18
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f'(x), biết f(3)+f(20=f(0)+f(1) và các khẳng định sau:
1) Hàm số y=f(x) có 2 điểm cực trị
2) Hàm số y=f(x) đồng biến trên khoảng - ∞ ; 0
3) M a x 0 ; 3 f x = f 3
4) M a x ℝ f x = f 2
5) M a x - ∞ ; 2 f x = f 0 .
Số khẳng định đúng là
A. 2
B. 3
C. 4
D. 5
Cho hàm số f(x) xác định trên R\{-1;1/2} và thỏa mãn f ' x = 4 x + 1 2 x 2 + x - 1 ; f 1 + f - 2 = 0 và f(0) + 2f(1)=0. Giá trị của biểu thức f(-3) + f(-3) + f(-1/2) bằng:
A. ln14+ln20-3/2ln10
B. -ln10
C.ln70
D. ln28
Cho hàm số f (x) nhận giá trị dương, có đạo hàm liên tục trên khoảng ( 0 ; + ∞ ) thỏa mãn 2 f ' ( x ) ( f ( x ) ) 2 = f ( x ) ( x + 2 ) x 3 , ∀ x > 0 và f ( 1 ) = 1 3 . Tích phân ∫ 1 2 1 ( f ( x ) ) 2 d x bằng
A. 11 2 +ln2
B. - 1 2 +ln2
C. 3 2 +ln2
D. 7 2 +ln2
Cho hàm số f(x) xác định trên ( - ∞ ; - 1 ) ∪ ( 0 ; + ∞ ) thỏa mãn f ' ( x ) = 1 x 2 + x , f ( 1 ) = ln 1 2 . Cho ∫ 1 2 ( x 2 + 1 ) 2 f ( x ) d x =a ln3+b ln2+c, với a,b,c là các số hữu tỷ. Giá trị biểu thức a+b+c bằng
A. 27 20
B. 23 20
C. - 27 20
D. - 23 20
Cho hàm số f (x) nhận giá trị dương và có đạo hàm liên tục trên đoạn [0;2] thoả mãn f(0)=3,f(2)=12 và ∫ 0 2 ( f ' ( x ) ) 2 f ( x ) d x = 6 . Tính f(1).
A. 27 4
B. 25 4
C. 9 2
D. 15 4