Cho hàm số y = x 4 - 2 ( 1 - m 2 ) x 2 + m + 1 . Tìm tất cả các giá trị của tham số m để hàm số có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số lập thành tam giác có diện tích lớn nhất
A. m = 0
B. m = - 1 2
C. m = 1
D. m = 1 2
Cho hàm số y = x 4 - 2 ( 1 - m 2 ) x 2 + m + 1 . Tìm tất các giá trị của tham số m để hàm số cực đại, cực tiểu và các điểm cực trị của đồ thị lập thành một tam giác có diện tích lớn nhất
A. m = 1 2
B. m = 0
C. m = 1
D. m = - 1 2
Cho hàm số y = - x 4 + m + 2 x 2 + 3 (m là tham số). Tìm tham số m để đồ thị của hàm số có hai điểm cực đại và 1 điểm cực tiểu tạo thành 3 đỉnh của một tam giác cân
A. m > - 3
B. m < - 2
C. m > - 2
D. m < - 3
Tìm tất cả các giá trị thực của tham số m để đường thẳng đi qua điểm cực đại, cực tiểu của đồ thị hàm số y = x 3 - 3 m x + 2 cắt đường tròn tâm I(1;1) bán kính R=1 tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB đạt giá trị lớn nhất.
A. m = 2 ± 3 2
B. m = 1 ± 3 2
C. m = 2 ± 5 2
D. m = 1 ± 5 2
Tìm tất cả các giá trị của m để đường thẳng đi qua điểm cực đại, cực tiểu của đồ thị hàm số y = x 3 − 3 m x + 2 cắt đường tròn tâm I 1 ; 1 , bán kính bằng 1 tại hai điểm phân biệt sao cho diện tích tam giác IAB đạt giá trị lớn nhất
A. m = 1 ± 3 2
B. m = 2 ± 3 2
C. m = 2 ± 5 2
D. m = 2 ± 3 3
Cho hàm số y = - x 3 + 3 x 2 + 3 ( m 2 - 1 ) x - 3 m 2 - 1 . Có bao nhiêu giá trị nguyên của m để đồ thị hàm số có điểm cực đại và điểm cực tiểu nằm bên trái đường thẳng x=2
A. 3
B. 1
C. 2
D. 0
Xét các khẳng định sau:
(I). Nếu hàm số y = f(x) có giá trị cực đại là M và giá trị cực tiểu là m thì M > m
(II). Đồ thị hàm số y = a x 4 + b x 2 + c ( a ≠ 0 ) luôn có ít nhất một điểm cực trị
(III). Tiếp tuyến (nếu có) tại một điểm cực trị của đồ thị hàm số luôn song song với trục hoành.
Số khẳng định đúng là :
A. 0
B. 3
C. 2
D. 1
Cho hàm số y = x 4 - 2 m 2 x 2 + 1 (1). Các giá trị m để đồ thị hàm số (1) có 3 điểm cực trị A, B, C và diện tích tam giác ABC bằng 1
A. ± 2
B. m = 1 , m = 3
C. m = ± 1
D. Đ á p á n k h á c
Cho hàm số: y=x-3-3(m+1)x2+9x+m-2 (1) có đồ thị là (Cm). Có bao nhiêu giá trị nguyên của tham số m để (Cm) có điểm cực đại, cực tiểu đối xứng với nhau qua đường thẳng y=1/2x ?
A. 0
B. 1
C. 2
D. 3