Cho hàm số y = x 3 + 3 x 2 - 2 x - 3 có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến có hệ số góc nhỏ nhất.
A. ![]()
B. ![]()
C. ![]()
D. ![]()
Trong các tiếp tuyến tại các điểm trên đồ thị hàm số y = x 3 - 3 x 2 + 2 , tiếp tuyến có hệ số góc nhỏ nhất bằng:
A. -3
B. 3
C. -4
D. 0
Cho hàm số y = ln ( x + 2 ) có đồ thị là C Gọi A là giao điểm của C với trục Ox.
Hệ số góc của tiếp tuyến của tại A bằng
A. 1
B. - 1
C. - 1 4
D. 1 2
Cho hàm số y = x 3 - 3 x 2 - 1 Trong tất cả các tiếp tuyến của đồ thị hàm số, tiếp tuyến có hệ số góc k nhỏ nhất là:
A. k = 3
B. k = -3
C. k = -1
D. k = -2
Cho hàm số y = - x + 1 2 x - 1 có đồ thị là (C) , đường thẳng d: y=x+m. Với mọi m ta luôn có d cắt (C) tại 2 điểm phân biệt A: B. Gọi k1; k2 lần lượt là hệ số góc của các tiếp tuyến với (C) tại A; B . Tìm m để tổng k1+k2 đạt giá trị lớn nhất.
A. m=-1.
B.m=-2 .
C. m=3 .
D. m=-5.
Cho hàm số y = - x + 1 2 x - 1 có đồ thị là (C) , đường thẳng d: y= x+ m. Với mọi m ta luôn có d cắt (C) tại 2 điểm phân biệt A: B . Gọi k1; k2 lần lượt là hệ số góc của các tiếp tuyến với ( C) tại A; B . Tìm m để tổng k1+ k2 đạt giá trị lớn nhất.
A. -2
B. -1
C. 1
D. 2
Cho hàm số: y = 2 x + 1 x - 2
Viết phương trình tiếp tuyến của đồ thị (C) , biết hệ số góc của tiếp tuyến bằng –5.
Cho hàm số y = x 3 - 3 x 2 + 2 x - 9 có đồ thị (C). Gọi k là hệ số góc của các tiếp tuyến của (C) thì giá trị nhỏ nhất của k là
A. Không tồn tại
B. 1
C. -1
D. 0
Cho hàm số 3 2 y x x = − +3 có đồ thị (C) . Gọi 1 d , 2 d là tiếp tuyến của đồ thị (C) vuông góc với đường thẳng x y − + = 9 1 0 . Tính khoảng cách giữa hai đường thẳng 1 d , 2 d .