Cho hàm số y = f(x) xác định trên D = ℝ \ - 2 ; 2 , liên tục trên mỗi khoảng xác định và có bảng biến thiên sau
Có bao nhiêu khẳng định đúng trong các khẳng định sau?
(I). Đồ thị hàm số có 2 tiệm cận. (II). Hàm số đạt giá trị lớn nhất bằng 0.
(III). Hàm số có đúng 1 điểm cực trị. (IV). Đồ thị hàm số có 3 tiệm cận.
A. 0
B. 1
C. 2
D. 3
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình dưới đây:
Xét các mệnh đề sau:
(I). Hàm số nghịch biến trên khoảng (0;1)
(II). Hàm số đồng biến trên khoảng (-1;2)
(III). Hàm số có ba điểm cực trị
(IV). Hàm số có giá trị lớn nhất bằng 2.
Số mệnh đề đúng trong các mệnh đề trên là:
A. 4
B. 2
C. 3
D. 1
Cho hàm số y=f(x) xác định và liên tục trên R có đồ thị như hình vẽ bên. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y=f(-sinx+2). Giá trị của M – m bằng
A. 0
B. 1
C. 4
D. 5
Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
Tìm giá trị cực đại y C Đ và giá trị cực tiểu y C T của hàm số đã cho.
A. y C Đ = − 2 v à y C T = 2
B. y C Đ = 3 v à y C T = 0
C. y C Đ = 2 v à y C T = 0
D. y C Đ = 3 v à y C T = - 2
Cho hàm số f (x) xác định và liên tục trên đoạn [-2;3] và có bảng biến thiên như hình vẽ sau
Giá trị nhỏ nhất của hàm số f (x) trên đoạn [-2;3] bằng
A. -2
B. 5.
C. 0.
D. 1
Cho hàm số y=f(x) liên tục trên [-3;2] và có bảng biến thiên như sau. Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [-1;2] Giá trị của M+m bằng
A. 3
B. 2
C. 1
D. 4
Cho hàm số y=f(x) xác định và liên tục trên đoạn [-1;3] có đồ thị như hình vẽ sau.
Có bao nhiêu giá trị của m để giá trị lớn nhất của hàm số y = |f(x)+m| trên đoạn [-1;3] bằng 2018?
A. 2.
B. 4.
C. 6
D. 0
Cho hàm số y = f ( x ) xác định và liên tục trên đoạn [ - 1 ; 2 ] , có đồ thị của hàm số y = f ( x ) như hình sau:
Gọi M là giá trị lớn nhất của hàm y = f ( x ) trên đoạn [ - 1 ; 2 ] . Mệnh đề nào dưới đây đúng?
A. M = f ( 1 2 )
B. M = m a x { f ( - 1 ) ; f ( 1 ) ; f ( 2 ) }
C. M = f ( 3 2 )
D. M = f ( 0 )
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f' (x) như hình vẽ bên. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
1. Hàm số g(x) có 3 điểm cực trị.
2. Hàm số g(x)đạt cực tiểu tại x = 0.
3. Hàm số g(x)đạt cực đại tại x = 2.
4. Hàm số g(x)đồng biến trên khoảng (-2;0).
5. Hàm số g(x)nghịch biến trên khoảng (-1;1).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 1.
B. 4.
C. 3.
D. 2.
Cho hàm số y=f(x) liên tục trên R có đồ thị như hình vẽ bên
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [1;4] bằng
A. 6
B. 4
C. 5
D. 3