Cho hàm số y = f ( x ) liên tục trên R và có đồ thị như hình vẽ bên. Tập hợp tất cả các giá trị thực của tham số m để phương trình f sin x = m có nghiệm thuộc khoảng là
A. (-1;3)
B. (-1;1)
C. (-1;3)
D. (-1;1)
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị thực của tham số m để phương trình f(2sin x +1) = m có nghiệm thuộc nửa khoảng [ 0 ; π 6 ) là:
A. (-2;0]
B. (0;2]
C. [-2;2)
D. (-2;0)
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình vẽ dưới. Gọi S là tập hợp tất cả các giá trị nguyên của m để phương trình f(sin x) = 2sin x +m có nghiệm thuộc khoảng 0 ; π . Tổng các phần tử của S bằng:
A. -10
B. -8
C. -6
D. -5
Cho hàm số y = f x liên tục trên R và có đồ thị như hình vẽ bên. Tập hợp tất cả các giá trị thực của tham số m để phương trình f f sin x = m có nghiệm thuộc khoảng 0 ; π là
A. [-1;3)
B. (-1;1)
C. (-1;3]
D. [-1;1)
Cho hàm số f x liên tục trên R và có đồ thị như hình vẽ bên. Tập hợp tất cả các giá trị thực của tham số m để phương trình có nghiệm thuộc khoảng 0 ; π là
A. - 4 ; - 2
B. - 4 ; 0 \ - 2
C. [ - 4 ; - 2 )
D. ( - 4 ; - 2 ]
Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình bên. Tập hợp tất cả các giá trị thực của tham số m để phương trình f ( e x ) = m có nghiệm thuộc khoảng (0; ln 3) là:
A. (1;3)
B. - 1 3 ; 0
C. - 1 3 ; 1
D. - 1 3 ; 1
Cho hàm số f(x) liên tục trên ℝ và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị thực của tham số m để phương trình f ( 1 - 2 cos x ) + m = 0 có nghiệm thuộc khoảng - π 2 ; π 2
A. [-4;0]
B. [-4;0)
C. [0;4)
D. (0;4)
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị của tham số m để phương trình f(cos x) = -2m + 1 có nghiệm thuộc khoảng 0 ; π 2 là
A. (-1;1]
B. (0;1)
C. (-1;1)
D. (0;1]
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình vẽ dưới đây
Tập hợp tất cả các giá trị thực của tham số m để bất phương trình f ( 4 - x 2 ) = m có nghiệm thuộc nửa khoảng [ - 2 ; 3 ) là:
A. (-1;3]
B. ( - 1 ; f 2 ]
C. [-1;3]
D. - 1 ; f 2