Cho hàm số y = f(x) xác định trên D = ℝ \ - 2 ; 2 , liên tục trên mỗi khoảng xác định và có bảng biến thiên sau
Có bao nhiêu khẳng định đúng trong các khẳng định sau?
(I). Đồ thị hàm số có 2 tiệm cận. (II). Hàm số đạt giá trị lớn nhất bằng 0.
(III). Hàm số có đúng 1 điểm cực trị. (IV). Đồ thị hàm số có 3 tiệm cận.
A. 0
B. 1
C. 2
D. 3
Cho hàm số y=f(x) có đạo hàm trên đoạn [a;b]. Ta xét các khẳng định sau:
1) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị lớn nhất của f(x) trên đoạn [a;b]
2) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị nhỏ nhất của f(x) trên đoạn [a,b]
3) Nếu hàm số f(x) đạt cực đại tại điểm x 0 và đạt cực tiểu tại điểm x 1 x 0 , x 1 ∈ a ; b thì ta luôn có f x 0 > f x 1
Số khẳng định đúng là?
A. 1
B. 2
C. 0
D. 3
Cho hàm số y=f(x)có đạo hàm trên đoạn [a,b]. Ta xét các khẳng định sau:
1) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị lớn nhất của f(x) trên đoạn[a,b]
2) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị nhỏ nhất của f(x) trên đoạn [a,b]
3) Nếu hàm số f(x) đạt cực đại tại điểm x 0 và đạt cực tiểu tại điểm x 1 x 0 , x 1 ∈ a ; b thì ta luôn có f x 0 > f x 1
Số khẳng định đúng là?
A. 1
B. 2
C. 0
D. 3
Xét các khẳng định sau:
(I). Nếu hàm số y = f(x) có giá trị cực đại là M và giá trị cực tiểu là m thì M > m
(II). Đồ thị hàm số y = a x 4 + b x 2 + c ( a ≠ 0 ) luôn có ít nhất một điểm cực trị
(III). Tiếp tuyến (nếu có) tại một điểm cực trị của đồ thị hàm số luôn song song với trục hoành.
Số khẳng định đúng là :
A. 0
B. 3
C. 2
D. 1
Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
Tìm giá trị cực đại y C Đ và giá trị cực tiểu y C T của hàm số đã cho.
A. y C Đ = − 2 v à y C T = 2
B. y C Đ = 3 v à y C T = 0
C. y C Đ = 2 v à y C T = 0
D. y C Đ = 3 v à y C T = - 2
Cho hàm số y = x 2 3 + 2017 , có các khẳng định sau.
I. Hàm số luôn đồng biến trên − ∞ ; + ∞
II. Hàm số có một điểm cực tiểu là x = 0
III. Giá trị lớn nhất bằng 2017.
IV. Hàm số luôn nghịch biến trên − ∞ ; + ∞
Số khẳng định đúng là:
A. 0
B. 1
C. 2
D. 3
Cho hàm số y = f x có đạo hàm trên đoạn a ; b . Ta xét các khẳng định sau:
(1) Nếu hàm số f x đạt cực đại tại điểm x 0 ∈ a ; b thì f x 0 là giá trị lớn nhất của f x trên đoạn a ; b .
(2) Nếu hàm số f x đạt cực đại tại điểm x 0 ∈ a ; b thì f x 0 là giá trị nhỏ nhất của f x trên đoạn a ; b
(3) Nếu hàm số f x đạt cực đại tại điểm x 0 và đạt cực tiểu tại điểm x 1 ( x 0 , x 1 ∈ a ; b ) thì ta luôn có f x 0 > f x 1 .
Số khẳng định đúng là?
A. 1
B. 2
C. 0
D. 3
Xét tính đúng sai của các mệnh đề sau (với a, b, c, d là các hằng số).
(I): Giá trị cực đại của hàm số y = f x luôn lớn hơn giá trị cực tiểu của nó.
(II): Hàm số y = a 4 + b x + c a ≠ 0 luôn có ít nhất một cực trị
(III): Giá trị cực đại của hàm số y = f x luôn lớn hơn mọi giá trị của hàm số đó trên tập xác định.
(IV): Hàm số y = a x + b c x + d c ≠ 0 ; a d − b c ≠ 0 không có cực trị.
Số mệnh đề đúng là:
A. 1
B. 4
C. 3
D. 2
Cho các mệnh đề sau:
1. Nếu hàm số y = f x liên tục, có đạo hàm tới cấp hai trên a ; b , x 0 ∈ a ; b và f ' x 0 = 0 f ' ' x 0 ≠ 0 thì x0 là một điểm cực trị của hàm số.
2. Nếu hàm số y = f x xác định trên a ; b thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
3. Nếu hàm số y = f x liên tục trên a ; b thì hàm số có đạo hàm tại mọi x thuộc [a;b].
4. Nếu hàm số y = f x có đạo hàm trên a ; b thì hàm số có nguyên hàm trên a ; b
Số mệnh đề đúng là:
A. 2
B. 1
C. 3
D. 4
Cho hàm số f(x) xác định trên D = [ 0 ; 10 ) \ { 1 } có bảng biến thiên như hình vẽ, trong các mệnh đề sau có bao nhiêu mệnh đề đúng.
i. Hàm số có cực tiểu là 3.
ii. Hàm số đạt cực đại tại x=1 .
iii. Hàm số có giá trị cực đại là 12.
iv. Hàm số có cực tiểu là -6 .
A. 0
B. 1
C. 2
D. 3