Cho hàm số y=f(x) có đồ thị là (C), hàm số y=f'(x) có đồ thị như hình vẽ bên. Tiếp tuyến với (C) tại điểm có hoành độ x=2 cắt (C) tại hai điểm phân biệt có hoành độ lần lượt là a,b
Giá trị ( a - b ) 2 thuộc khoảng nào dưới đây
A. ( 0 ; 9 )
B. ( 12 ; 16 )
C. ( 16 ; + ∞ )
D. ( 9 ; 12 )
Cho hàm số y=f(x) có đồ thị (C) như hình vẽ bên và có đạo hàm f'(x) liên tục trên khoảng (-∞;+∞).Đường thẳng ở hình vẽ bên là tiếp tuyến của (C) tại điểm có hoành độ x=0. Gọi m là giá trị nhỏ nhất của hàm số y=f'(x). Mệnh đề nào dưới đây đúng ?
A. m < -2
B. -2 < m < 0.
C. 0 < m < 2
D. m > 2
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có
đồ thị y=f'(x) như hình vẽ bên. Đặt g ( x ) = f ( x ) - x 2 2 biết rằng
đồ thị của hàm g(x) luôn cắt trục hoành tại 4 điểm phân biệt.
Mệnh đề nào dưới đây đúng
A. g ( 0 ) > 0 g ( 1 ) < 0 g ( - 2 ) g ( 1 ) > 0
B. g ( 0 ) > 0 g ( 1 ) > 0 g ( - 2 ) g ( 1 ) < 0
C. g ( 1 ) < 0 g ( 0 ) > 0
D. g ( 0 ) > 0 g ( - 2 ) < 0
Cho hàm số y = f(x) xác định trên D = ℝ \ - 2 ; 2 , liên tục trên mỗi khoảng xác định và có bảng biến thiên sau
Có bao nhiêu khẳng định đúng trong các khẳng định sau?
(I). Đồ thị hàm số có 2 tiệm cận. (II). Hàm số đạt giá trị lớn nhất bằng 0.
(III). Hàm số có đúng 1 điểm cực trị. (IV). Đồ thị hàm số có 3 tiệm cận.
A. 0
B. 1
C. 2
D. 3
Cho hàm số y=f(x) xác định trên R. Đồ thị hàm số y = f ' ( x ) cắt trục hoành tại 3 điểm a, b, c ( a < b < c ) như hình dưới:
Biết f(b) < 0 Đồ thị hàm số y=f(x) cắt trục hoành tại bao nhiêu điểm phân biệt.
A. 4
B. 1
C. 0
D. 2
Cho hàm số y = f x có đồ thị (C) như hình vẽ bên và có đạo hàm f ' x liên tục trên khoảng - ∞ ; + ∞ Đường thẳng ở hình vẽ bên là tiếp tuyến của (C) tại điểm có hoành độ x = 0 Gọi m là giá trị nhỏ nhất của hàm số y = f ' x . Mệnh đề nào dưới đây đúng ?
A. m < - 2
B. - 2 < m < 0
C. 0 < m < 2
D. m > 2
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình dưới đây:
Xét các mệnh đề sau:
(I). Hàm số nghịch biến trên khoảng (0;1)
(II). Hàm số đồng biến trên khoảng (-1;2)
(III). Hàm số có ba điểm cực trị
(IV). Hàm số có giá trị lớn nhất bằng 2.
Số mệnh đề đúng trong các mệnh đề trên là:
A. 4
B. 2
C. 3
D. 1
Cho hàm số y = f ( x ) liên tục trên R, có đồ thị (C) như hình bên. Tìm tất cả các giá trị thực của tham số m để đường thẳng y = 2 m - 1 cắt đồ thị (C) tại 2 điểm phân biệt
A. m > 3
B. m < 1
C. m = 1 m = 3
D. 1 < m < 3
Cho hàm số y = f x có đạo hàm liên tục trên R và có đồ thị y = f ' x như hình vẽ bên.
Đặt g x = f x - x 2 2 biết rằng đồ thị của hàm g x luôn cắt trục hoành tại 4 điểm phân biệt. Mệnh đề nào dưới đây đúng?
A. g 0 > 0 g 1 < 0 g - 2 g 1 > 0
B. g 0 > 0 g 1 > 0 g - 2 g 1 < 0
C. g ( 0 ) > 0 g ( 1 ) < 0
D. g ( 0 ) > 0 g ( - 2 ) < 0