Cho hàm số f (x) xác định trên ( - ∞ ; - 1 ) ∪ ( 0 ; + ∞ ) và f ' ( x ) = 1 x 2 + x , f ( 1 ) = ln 1 2 . Biết ∫ 1 2 ( x 2 + 1 ) f ( x ) d x = a ln 3 + b ln 2 + c với a,b,c là các số hữu tỉ. Giá trị biểu thức a+b+c bằng
A. 27 2
B. 1 6
C. 7 6
D. - 3 2
Cho hàm số y=f(x) liên tục và có đạo hàm trên R thỏa mãn điều kiện: 6 x e 2 x - y n = 4 y - y ' Biết rằng f ( 0 ) = 0 ; f ( ln 2 ) = 4 ln 3 2 + ln 2 Giá trị của tích phân ∫ 0 1 f ( x ) d x nằm trong khoảng nào dưới đây?
A. (0;3)
B. (3;4)
C. (4;7)
D. (10;12)
Cho hàm số y = f(x) có đạo hàm là f'(x) = 1 và f(1) = 1. Giá trị f(5) bằng
A. 1+ ln3
B. ln2
C. 1 + ln2
D. ln3
Họ nguyên hàm F(x) của hàm số f ( x ) = 2 − ln 2 ( 2 x + 1 ) 2 x + 1 là
A. F ( x ) = ln 2 x + 1 − ln 3 2 x + 1 6 + C
B. F ( x ) = − 2 + 2 ln 2 x + 1 2 x + 1 2 + C
C. F ( x ) = 2 ln ( 2 x + 1 ) − ln 3 2 x + 1 3 + C
D. F ( x ) = 2 ( 2 x + 1 ) − ln 3 2 x + 1 + C
Cho hàm số y = f(x) có đạo hàm liên tục trên [1;2] thỏa mãn ∫ 1 2 f ' ( x ) d x = 10 và ∫ 1 2 f ' ( x ) f x d x = ln 2 . Biết rằng f x > 0 ∀ x ∈ 1 ; 2 . Tính f(2)
A. f(2) = 10
B. f(2) = - 20
C. f(2) = - 10
D. f(2) = 20
Cho hàm số y = f(x) có đạo hàm liên tục trên [1;2] thỏa mãn ∫ 1 2 f ' ( x ) d x = 10 và ∫ 1 2 f ' ( x ) f x d x = ln 2 . Biết rằng f x > 0 ∀ x ∈ 1 ; 2 . Tính f(2)
A. f(2) = 10
B. f(2) = - 20
C. f(2) = - 10
D. f(2) = 20
Cho hàm số f(x) liên tục và có đạo hàm trên R và f ' ( x ) = e - f ( x ) ( 2 x + 3 ) ; f ( 0 ) = ln 2 . Tính ∫ 1 2 f ( x ) dx ?
A. 6ln2 + 2.
B. 6ln2 – 2.
C. 6ln2 – 3.
D. 6ln2 + 3.
Cho hàm số y = f(x) có đạo hàm f ' x = 1 2 x − 1 và f(1) = 1. Giá trị f(5) bằng:
A. 1 + ln 3.
B. ln 2
C. 1 + ln 2
D. ln 3
Biết hàm số f(x) có đạo hàm f’(x) liên tục trên R và f 1 = e 2 , ∫ 1 ln 3 f ' x d x = 9 - e 2 . Tính f(ln3)
A. f ln 3 = ln 3 + 2 e 2
B. f(ln3)=3
C. f ln 3 = 9 - 2 e 2
D. f(ln3)=9
Cho hàm số y = f ( x ) xác định và liên tục trên R thỏa mãn f ( x ) > 0 , f ’ ( x ) = - e x . f 2 ( x ) , ∀ x ∈ R và f ( 0 ) = 1 2 . Tính giá trị của f ( ln 2 )
A. ln 2 + 1 2
B. 1 4
C. 1 3
D. ln 2 2 + 1 2