Cho hàm số y=f(x) có bảng biến thiên như hình bên dưới.
Phương trình đường thẳng đi qua hai điểm cực đại và cực tiểu của đồ thị hàm số đã cho là
Cho hàm số y=f(x) có bảng biến thiên như hình bên dưới.
Số tiệm cận đứng của đồ thị hàm số y = 2019 2 f ( x ) - 3 là
Cho hàm số y = f x có bảng biến thiên như hình vẽ bên. Hàm số y = f - x + 3 đạt cực đại tại
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như hình bên. Đồ thị hàm số y=f(x) cắt đường thẳng y= -2018 tại bao nhiêu điểm?
Cho hàm số y = f ( x ) có bảng biến thiên như sau. Giá trị cực đại của hàm số y = f ( x ) là
A. 4
B. 2
C. 0
D. 8 3
Cho hàm số y=f(x) có bảng biến thiên như hình bên dưới. Giá trị cực tiểu của hàm số là
Cho hàm sốy=f(x) . Hàm số y=f'(x) có bảng biến thiên như hình vẽ sau:
Tìm số điểm cực trị của hàm số: y=f(x).
Cho hàm số f(x) có đạo hàm cấp hai f''(x) liên tục trên R và có đồ thị hàm số f(x) như hình vẽ bên. Biết rằng hàm số f(x) đạt cực đại tại điểm x = 1 đường thẳng trong hình vẽ bên là tiếp tuyến của đồ thị hàm số f(x) tại điểm có hoành độ x = 2 . Tích phân ∫ 0 ln 3 e x f " e x + 1 2 d x bằng
A. 8
B. 4
C. 3
D. 6
Cho hàm số y=f(x). Hàm số y=f'(x) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số y=f(x)
A. 3.
B. 4
C. 1
D. 2.