Cho hàm số y = f x = a x 3 + b x 3 + c x + d a , b , c , d ∈ ℝ ; a ≠ 0 biết f'(-1)=3. Tính lim ∆ x → ∞ f 1 + ∆ x + f 1 ∆ x
A. 3
B. -3
C. 1
D. -1
Cho F(x) là một nguyên hàm của hàm số f(x) trên đoạn [1;3], F(1)=3,F(3)=5 và ∫ 1 3 ( x 4 - 8 x ) f ( x ) dx = 12 . Tính I = ∫ 1 3 ( x 3 - 2 ) F ( x ) dx .
A. I= 147 2
B. I= 147 3
C. I= - 147 2
D. I= 147.
Cho hàm số f (x) có đạo hàm liên tục trên đoạn [1;2] thỏa mãn ∫ 1 2 ( x - 1 ) 2 f ( x ) d x = - 1 3 , f(2) = 0 và ∫ 1 2 f ' ( x ) 2 d x = 7 . Tính tích phân ∫ 1 2 f ( x ) d x
A. I = 7 5
B. I = - 7 5
C. I = - 7 20
D. I = 7 20
Cho hàm số f ( x ) = a x 4 + b x 2 + c có m i n ( - ∞ ; 0 ) f ( x ) = f ( - 1 ) . Giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [ 1 2 ;2] bằng
A. c + 8a
B. c - 7 16 a
C. c + 9 16 a
D. c - a
Cho hàm số f ( x ) = x + x 2 2 + x 3 3 + . . . + x n + 1 n + 1 , n ∈ N . Tính lim x → ∞ f ' ( 1 3 ) .
A. L = 2 3
B. L = 3 2
C. L = 5 4
D. L = 7 4
Cho hàm số y=f(x) có đạo hàm liên tục trên đoạn 0 ; 1 và f ( 0 ) + f ( 1 ) = 0 Biết ∫ 0 1 f 2 ( x ) d x = 1 2 , ∫ 0 1 f ' ( x ) c o s πxdx = π 2 Tính ∫ 0 1 f ( x ) d x
A. 2 / π
B. 3 π / 2
C. π
D. 1 / π
Cho hàm số y = f ( x ) liên tục trên R và có đạo hàm f ' ( x ) = - ( x - 10 ) ( x - 11 ) 2 ( x - 12 ) 2019 . Khẳng định nào dưới đây đúng ?
A. Hàm số đồng biến trên các khoảng (10;11) và ( 12 ; + ∞ ) .
B. Hàm số có ba điểm cực trị
C. Hàm số đồng biến trên khoảng (10;12)
D. Hàm số đạt cực đại tại x = 2 và đạt cực tiểu tại x = 1 và x = 3
Cho hàm số f ( x ) = a x + b c x + d với a,b,c,d là các số thực và c ≠ 0. Biết f(1)=1, f(2)=2 và f(f(x))=x với mọi x ≠ - d c . Tính l i m x → ∞ f ( x ) .
A. 3 2
B. 5 6
C. 2 3
D. 6 5
Cho hàm số f (x) nhận giá trị dương và có đạo hàm liên tục trên đoạn [0;2] thoả mãn f(0)=3,f(2)=12 và ∫ 0 2 ( f ' ( x ) ) 2 f ( x ) d x = 6 . Tính f(1).
A. 27 4
B. 25 4
C. 9 2
D. 15 4
Cho hàm số f(x) thỏa mãn ∫ 1 2 ( 2 x + 3 ) f ' ( x ) d x = 15 và 7f(2)-5f(1)=8. Tính I = ∫ 1 2 f ( x ) d x
A. I = 7 2
B. I = - 2 7
C. I = 2 7
D. I = - 7 2