Đáp án A
y ' = - 2 sin 4 x , y ' ' = - 8 cos 4 x , y ' ' ' = 32 sin 4 x
⇒ y ' ' ' + y ' ' + 16 y ' + 16 y - 8 = 0
Đáp án A
y ' = - 2 sin 4 x , y ' ' = - 8 cos 4 x , y ' ' ' = 32 sin 4 x
⇒ y ' ' ' + y ' ' + 16 y ' + 16 y - 8 = 0
Gọi (H) là hình phẳng giới hạn bởi parabol (P): y = 8 x - x 2 và trục hoành. Các đường thẳng y=a,y=b,y=c với 0<a<b<c<16 chia (H) thành bốn phần có diện tích bằng nhau. Giá trị của biểu thức ( 16 - a ) 3 + ( 16 - b ) 3 + ( 16 - c ) 3 bằng
A. 2048.
B. 3584.
C. 2816.
D. 3480.
Cho hàm số f x = a x + b c x + d với a , b , c , d ∈ R có đồ thị hàm số y=f'(x) như hình vẽ bên. Biết rằng giá trị lớn nhất của hàm số y=f(x) trên đoạn [-3;-2] bằng 8. Giá trị của f(2) bằng.
A. 2
B. 5
C. 4
D. 6
Cho các mệnh đề sau đây:
(1) Hàm số f ( x ) = log 2 2 x - log 2 x 4 + 4 có tập xác định D = [ 0 ; + ∞ )
(2) Hàm số y = log a x có tiệm cận ngang
(3) Hàm số y = log a x ; 0 < a < 1 và Hàm số y = log a x , a > 1 đều đơn điệu trên tập xác định của nó
(4) Bất phương trình: log 1 2 5 - 2 x 2 - 1 ≤ 0 có 1 nghiệm nguyên thỏa mãn.
(5) Đạo hàm của hàm số y = ln 1 - cos x là sin x 1 - cos x 2
Hỏi có bao nhiêu mệnh đề đúng:
A. 0
B. 2
C. 3
D.1
Biết đồ thị hàm số y = a x 3 + b x 2 + c x + d có 2 điểm cực trị là − 1 ; 18 và 3 ; − 16 . . Tính tổng a + b + c + d .
A. 1.
B. 3.
C. 2.
D. 0.
Cho các phát biểu sau
(1) Đơn giản biểu thức M = a 1 4 - b 1 4 a 1 4 + b 1 4 a 1 2 + b 1 2 ta được M = a - b
(2) Tập xác định D của hàm số y = log 2 ln 2 x - 1 là D = e ; + ∞
(3) Đạo hàm của hàm số y = log 2 ln x là y ' = 1 x ln x . ln 2
(4) Hàm số y = 10 log a x - 1 có đạo hàm tại mọi điểm thuộc tập xác định
Số các phát biểu đúng là
A. 6
B. 1
C. 3
D. 4
Đồ thị hàm số y = f(x) = x 3 + a x 2 + b x + c có hai điểm cực đại là A ( -2;16 ) và B ( 2;-16 ). Tính a + b + c
A. -12
B. 0
C. -6
D. -3
Cho hai số thực x, y thỏa mãn: log 3 ( y 2 + 8 y + 16 ) + l o g 2 [( 5 − x ) ( 1 + x ) ]=2log 3 5 + 4 x − x 2 3 + log 2 ( 2 y + 8 ) 2 . Gọi S là tập các giá trị nguyên của tham số m để giá trị lớn nhất của biểu thức P = x 2 + y 2 − m không vượt quá 10. Hỏi S có bao nhiêu tập con không phải là tập rỗng?
A. 2047
B. 16383
C. 16384
D. 32
Cho hàm số y = f(x) có đạo hàm trên R và đồ thị (C). Tiếp tuyến của đồ thị (C) tại điểm (2;m) có phương trình là y = 4 x - 6 . Tiếp tuyến của các đồ thị hàm số y = f f x và y = f 3 x 2 - 10 tại điểm có hoành độ bằng 2 có phương trình lần lượt là y = a x + b v à y = c x + d . Tính giá trị của biểu thức S = 4 a + 3 c - 2 b + d
A. S = -26
B. S = 176
C. S = 178
D. S = 174
Cho hàm số y = f(x) liên tục trên khoảng - ∞ ; + ∞ , thỏa mãn các điều kiện l i m x → 0 f x x = 2 và hàm số y = f 2 x sin 2 x k h i x > 0 a x + b k h i x ≤ 0 có đạo hàm tại điểm x = 0 Giá trị của biểu thức a + b bằng
A. 2
B. 3
C. 0
D. 1