Cho hàm số y = x 3 - 3 x 2 + 3 có đồ thị (C) và đường thẳng d : y = x + 3 . Số giao điểm của đường thẳng d với đồ thị (C) bằng bao nhiêu?
A. 0.
B. 2.
C. 1.
D. 3.
Cho hàm số y = 2 x + 1 x + 1 có đồ thị (C) và đường thẳng d:y=x+m. Giá trị của tham số m để d cắt (C) tại hai điểm phân biệt A, B sao cho A B = 10 là:
A.m=-1 hoặc m=6 hoặc m=7
B. 0 ≤ m ≤ 5
C.m=0 hoặc m=6
D.m=0
Cho hàm số y = x x − 1 có đồ thị = C và đường thẳng d : y = − x + m . Khi đó số giá trị của m để đường thẳng d cắt đồ thị C tại hai điểm phân biệt A, B sao cho tam giác OAB (O là gốc tọa độ ) có bán kính đường tròn ngoại tiếp bằng 2 2 là:
A.0
B. 3
C. 1
D. 2
Cho hàm số y = x − 2 x − 1 có đồ thị (C) . Gọi giao điểm của đồ thị (C) với đường thẳng d : y = − x + m là A, B. Tìm tất cả giá trị của tham số m để OAB là một tam giác thỏa mãn 1 O A + 1 O B = 1
A. m = 0 m = 2 .
B. m = 2.
C. m = 0 m = 3 .
D. m = 3.
Cho hàm số y = x 3 - 3 x 2 + 4 có đồ thị (C), đường thẳng d : y = m x + 1 với m là tham số, đường thẳng △ : y = 2 x - 7 . Tìm tổng tất cả các giá trị của tham số m để đường thẳng (d) cắt đồ thị (C) tại 3 điểm phân biệt A(-1;0); B;C sao cho B,C cùng phía với ∆ và d B ; ∆ + d C ; ∆ = 6 5
A. 0
B. 8
C. 5
D. 4
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C), biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=0; x=2 có diện tích bằng 28 5 (phần gạch chéo trong hình vẽ). Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=-1; x=0 có diện tích bằng:
A. 2 5
B. 1 9
C. 2 9
D. 1 5
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C) biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x = 0; x = 2 có diện tích bằng 28 5 (phần gạch chéo trong hình vẽ). Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x = − 1 ; x = 0 có diện tích bằng:
A. 2 5 .
B. 1 9 .
C. 2 9 .
D. 1 5 .
Cho hàm số y = x 3 + 2 ( m + 1 ) x 2 + 3 mx + 2 có đồ thị (C) và điểm M(3;1). Tìm tham số m để đường thẳng d:y=-x +2 cắt đồ thị (C ) tại ba điểm phân biệt A(0;2),B,C sao cho tam giác MBC có diện tích bằng 2 6 .
A.m= -2.
B. m= -2 hoặc m= 3.
C. m= 3.
D. Không tồn tại m.
Cho hàm số: y = x 3 + 2 m x 2 + 3 m − 1 x + 2 có đồ thị (C) Đường thẳng d : y = − x + 2 cắt đồ thị (C) tại ba điểm phân biệt A 0 ; − 2 , B v à C . Với M 3 ; 1 , giá trị tham số m để tam giác MBC có diện tích bằng 2 6 là:
A. m=-1
B. m = -1 hoặc m=4
C. m =4
D. không tồn tại m