Gọi D là hình phẳng giới hạn bởi đồ thị của hàm số y = x e x và các đường thẳng x=1; x=2; y=0. Tính thể tích V của khối tròn xoay thu được khi quay hình D xung quanh trục Ox.
Cho hình phẳng giới hạn bởi đồ thị hàm số y = 1 x và các đường thẳng y=0; x=1; x=4 Tính thể tích V của khối tròn xoay sinh ra khi cho hình (H) quanh xung quanh trục Ox.
A. 2 πln 2
B. 3 π 4
C. 3 4
D. 2ln2
Cho hàm số y = x 3 + a x 2 + bx+1
Tính thể tích vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường y = 0, x = 0, x = 1 và đồ thị (C ) xung quanh trục hoành.
Gọi D là hình phẳng giới hạn bởi đồ thị của hàm số y = x e x và các đường thẳng x = 1, x = 2, y = 0. Thể tích của khối tròn xoay thu được khi quay hình D xung quanh trục Ox bằng
Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số y = ( x - 1 ) e 2 x , trục tung và đường thẳng y = 0. Tính thể tích của khối tròn xoay thu được khi quay hình (H) quanh trục Ox
A. V = π 2 e 4 - 13
B. V = π 32 e 4 + 4
C. V = π 32 e 4 - 11
D. V = π 32 e 4 - 5
Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d có đồ thị (C). Biết rằng đồ thị (C) tiếp xúc với đường thẳng y= 4 tại điểm có hoành độ âm và đồ thị của hàm số Ox cho bởi hình vẽ dưới đây. Tính Thể tích vật thể tròn xoay được tạo thành khi quay hình phẳng H giới hạn bởi đồ thị (C) và trục hoành xung quanh trục hoành Ox.
D. Đáp án khác
Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số y = 1 cos x ; y = 0; x = 0; x = π 3 Thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh trục Ox là.
Gọi (H) là hình phẳng giới hạn bởi các đồ thì hàm số y = tan x, trục hoành và các đường thẳng x = 0, x = π 4 . Quay (H) xung quanh trục Ox ta được khối tròn xoay có thể tích bằng
Cho hàm số y = f(x) liên tục trên đoạn [a;b] và f(x)>0 Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = f(x) trục hoành và 2 đường thẳng x=a; x=b Thể tích của vật thể tròn xoay khi quay D quanh Ox được tính theo công thức