Cho hàm số y = 1 3 x 3 - 2 x 2 + 2 x + 1 có đồ thị (C). Biết đồ thị (C) có hai tiếp tuyến cùng vuông góc với đường thẳng d : y = x . Gọi h là khoảng cách giữa hai tiếp tuyến đó. Khẳng định nào sau đây đúng?
A. h = 2
B. h = 2 3
C. h = 2 2 3
D. h = 4 2 3
Cho đường thẳng d: 2x - y + 10 =0 và điểm M(1; -3)
a) Tính khoảng cách từ điểm M đến đường thẳng d
b) Viết pt đường thẳng đi qua M và vuông góc với đường thẳng d
c) Viết pt tiếp tuyến với đường tròn (C): (x-2)2 + (y-3)2 =9 biết rằng tiếp tuyến đó song song với đường thẳng d
d) Cho ∆ABC biết tọa độ trực tâm H(2;2). Tâm đường tròn ngoại tiếp ∆ABC là điểm I(1;2). Xác định tọa độ các điểm A, B, C biết trung điểm của BC là điểm M(1;1) và hoành độ điểm B âm
Cho hai hàm số f ( x ) = a x 4 + b x 3 + c x 2 + d x + e với a ≠ 0 và g(x)= p x 2 + q x - 3 c ó đồ thị như hình vẽ bên dưới. Đồ thị hàm số y=f(x) đi qua gốc tọa độ và cắt đồ thị hàm số y=g(x) tại bốn điểm có hoành độ lần lượt là -2;-1;1 và m. Tiếp tuyến của đồ thị hàm số y=f(x)-g(x) tại điểm có hoành độ x=-2 có hệ số góc bằng -15/2. Gọi (H) là hình phẳng giới hạn bởi đồ thị hai hàm số y=f(x) và y=g(x) (phần được tô đậm trong hình vẽ). Diện tích của hình (H) bằng
A. 1553 120
B. 1553 240
C. 1553 60
D. 1553 30
Cho đồ thị (C) của hàm số y = x 3 - 3 x + 2 . Số các tiếp tuyến với đồ thị (C) mà các tiếp tuyến đó vuông góc với đường thẳng d : y = - 1 3 x + 1 là
A. 1
B. 2
C. 3
D. 0
1. Cho hàm số y=2x-1/x-1 . Lấy M thuộc C với XM=m . tiếp tuyến của C tại M cắt 2 đường tiệm cận tại A,B . Gọi I là giao của 2 đường tiệm cận . CMR : M là trung điểm của AB và tam giác IAB có diện tích không phụ thuộc vào M
2.cho y=x+2/x-3 tìm M thuộc C sao cho khoảng cách từ M đến 2 đường tiệm cận C bằng nhau
3. cho y = x+2/x-2 tìm M thuộc C sao cho M cách đều hai trục tọa độ . viết pttt của C biết tiếp tuyến đó đi qua A(-6;5)
4 . cho y = x+1/x-1 . CMR (d) : 2x-y+m=0 luôn cắt C tại A,B trên 2 nhánh của (C) . tìm m để AB ngắn nhất
Cho hàm số y = 1 3 x 3 - 2 x 2 + x + 2 có đồ thị (C). Phương trình các tiếp tuyến với đồ thị (C) biết tiếp tuyến song song với đường thẳng d: y = - 2 x + 10 3 là
A. y = - 2 x + 2
B. y = - 2 x - 2
C. y = - 2 x + 10 , y = - 2 x - 2 3
D. y = - 2 x - 10 , y = - 2 x + 2 3
Cho hàm số y = 2 x x - 2 có đồ thị (C). Tìm giá trị nhỏ nhất h của tổng khoảng cách từ điểm M thuộc (C) tới hai đường thẳng Δ 1 : x - 1 = 0 ; Δ 2 : y - 2 = 0 .
A. h = 4
B. h = 3
C. h = 5
D. h = 2
Biết tiếp tuyến của đồ thị hàm số y = a x 4 + b x 2 + 2 tại điểm A(-1;1) vuông góc với đường thẳng x – 2y +3 = 0 Tính a 2 - b 2
A. a 2 - b 2 = 10
B. a 2 - b 2 = 13
C. a 2 - b 2 = - 2
D. a 2 - b 2 = - 5
Biết tiếp tuyến của đồ thị hàm số y = a x 4 + b x 2 + 2 tại điểm A − 1 ; 1 vuông góc với đường thẳng x − 2 y + 3 = 0 . Tính a 2 − b 2 .
A. 10
B. 13
C. -2
D. -5